THE ROLE OF ULTRASONOGRAPHY IN EVALUATION OF DISEASE ACTIVITY IN JUVENILE IDIOPATHIC ARTHRITIS IN EGYPT

Thesis
Submitted for fulfillment of a master Degree (M.Sc.) in pediatrics

By

Hossam Abdel Wahab Abdel Aziz

Faculty of Medicine - Cairo University

Under supervision

Prof. Dr. Nevine Mahmoud El Minawi

Assistant professor of pediatrics Faculty of medicine – Cairo University

Prof. Dr. Hala Mohamed Lotfy

Assistant professor of pediatrics Faculty of medicine- Cairo University

Prof. Dr. Hadeel Mohamed Seif El Deen

Assistant professor of radiology Faculty of medicine- Cairo University

> Faculty of Medicine Cairo University 2013

Acknowledgement

First of all, grateful appreciation to "Allah", who helped me greatly to perform this work.

I am greatly indebted to Professor **Dr. Nevine El Minawi**, Assistant Professor of pediatrics, Faculty of medicine, Cairo University, for her great assistance and support, admirable supervision, constant guidance, and valuable scientific discussions.

I would like to express my deepest gratitude and greatest respect to Professor **Dr. Hala Lotfy**, Assistant Professor of pediatrics, Faculty of medicine, Cairo University; under her kind supervision I had the honor and pleasure to proceed with this work, for her I wish to express my sincere appreciation for her continuous help, great support and valuable guidance.

I would like to express my sincere thanks and great appreciation to Professor **Dr. Hadeel Seif El Deen**, Assistant Professor of radiology, Faculty of medicine, Cairo university, for her valuable help and support, kind supervision, encouragement and constructive advices.

I would also like to express my deep thanks to my family for their continuous encouragement and unlimited support.

Thanks for the staff and patients attending Rheumatology clinic for giving me the chance to do this study.

ABSTRACT

Objective . The aim of this study is to evaluate capability of ultrasound to assess disease activity in juvenile idiopathic arthritis compared to clinical and laboratory evaluation.

Methods. Forty patients underwent clinical evaluation of 28 joints. Joints were assessed for swelling and tenderness. The same joints were scanned for synovial hyperplasia, joint effusion, and power Doppler (PD) signal.

Results. In total, 1120 joints were assessed both clinically and with US. On clinical examination, 182 joints (16.3 %) were swollen, 139 joints (12.4%) were tender. On US evaluation, 192 joints (17.1% of total) had synovial hyperplasia 39 joints (3.5% of total) had joint effusion and 142 joints (12.7 % of total number of examined joints) had power Doppler (PD) signal.

A total of 196 (17.5%) and 210 (18.8%) joints had clinical and US synovitis, respectively. Of the 924 clinically normal joints, 32 (3.5% of clinically normal joints) had subclinical synovitis (i.e., had synovitis on US only). Ultrasound hyperplasia was in highest correlation with clinical measurement of joint swelling, while power doppler ultrasound was in highest correlation with measurement of joints tenderness and joint effusion has the least correlation with both.

Conclusion: Study results showed ultrasound to be a reliable method in detection of synovitis and assessment of disease activity in juvenile idiopathic arthritis.

Key words:

Juvenile idiopathic arthritis, ultrasound, power doppler, synovitis, disease activity

Contents

Topic	Page
List of abbreviations	I
List of tables	IV
List of figures	V
Introduction and aim of the work	1
Review of literature	
Chapter (1):	3
Juvenile Idiopathic Arthritis	
Chapter (2):	
Ultrasonography In Juvenile Idiopathic Arthritis	37
Chapter (3):	
Power Doppler Ultrasonography In Juvenile	35
Idiopathic Arthritis	
Patients and methods	48
Results	55
Discussion	85
Summery and conclusion	94
References	97
Arabic summary	

List of Abbreviations

ACR	American College of Rheumatology
ARA	American Rheumatism Association
anti-CCP	AntiCyclic Citrullinated Peptide
ANA	AntiNuclear Antibodies
ASCT	Autologous Stem Cell Transplantation
CRP	C – reactive protein
CDAI	Clinical Disease Activity Index
DAS	Disease Activity Score
DMARDs	Disease-Modifying Antirheumatic Drugs
ESR	Erythrocyte Sedimentation Rate
EULAR	European League Against Rheumatism
ENA	Extractable Nuclear Antigens
FDA	Food and Drug Administration
FBC	Full Blood Count
gVAS	general health Visual Analog Scale
GH	Growth Hormone
Th	Helper T Cells
HLH	Hemophagocytic LymphoHistiocytosis
HLA	Human Leukocyte Antigen
IL	Interleukin
ILAR	International League of Associations for Rheumatology
IQRs	InterQuartile Ranges
JACAI	Juvenile Arthritis Child Assessment Index
JADI	Juvenile Arthritis Damage Index
JADAS	Juvenile Arthritis Disease Activity Score

JAFS	Juvenile Arthritis Functionality Scale
JAMAR	Juvenile Arthritis Multidimensional Assessment Report
JAPAI	Juvenile Arthritis Parent Assessment Index
JCA	juvenile chronic arthritis
JIA	Juvenile Idiopathic Arthritis
JRA	Juvenile Rheumatoid Arthritis
Lyp	lymphoid-specific phosphatase
MAS	Macrophage Activation Syndrome
MIF	macrophage Migration Inhibitory Factor
MRI	Magnetic Resonance Imaging
MHC	Major Histocompatibility Complex
MCP	MetaCarpoPhalangeal
MSUS	MusculoSkeletal UltraSound
NRAMP1	natural resistance associated macrophage protein 1
NSAIDs	NonSteroidal Anti-Inflammatory Drugs
n	number
PRQL	Pediatric Rheumatology Quality of Life scale
PDUS	Power Doppler Ultra Sound
PTPN22	protein tyrosine phosphatase N22
PIP	Proximal InterPhalangeal
PRF	Pulse Repetition Frequency
ROC	Receiver Operating Characteristic
RANKL	Receptor Activation of Nuclear factor-кВ Ligand
Tregs	Regulatory T Cells
RA	Rheumatoid Arthritis
RF	Rheumatoid Factor
STAT3	Signal transducer and activator of transcription 3

SDAI	Simplified Disease Activity Index
SD	Standard Deviation
SJC	Swollen Joints Count
SoJIA	Systemic onset Juvenile Idiopathic Arthritis
TJC	Tender Joints Count
TNF	Tumor Necrosis Factor
TNFAIP3	Tumor necrosis factor, alpha-induced protein 3
US	UltraSonography
VAS	Visual Analogue Scale
WISP 3	WNT1 inducible signaling pathway 3

List of Table

		Page
Table 1	ILAR criteria for classification of JIA subtypes	٧
Table 2	Criteria of effusion and synovitis in different joints	01
Table 3	Demographic and Clinical Characteristics of 40 JIA Patients (included in the study)	٥٦
Table 4	Different medications used for JIA patients (included in the study) throughout disease course	09
Table 5	Values of clinical and laboratory indicators of disease activity and US findings in the 40 study patients	٦ ٤
Table 6	Frequency of clinical and US features in specific joints (included in the study)	70
Table 7	Spearman's correlations between clinical and ultrasonographic features (according to study findings)	٧١

List of figures

Figures		Page
Figure 1	Right knee increased synovial thickening in comparison	
	to normal left knee synovial thickening; reveal right knee	41
	synovitis	
Figure 2	Left knee effusion, and increased synovial thickening;	42
	reveal left knee synovitis	
Figure 3	Mild degree of active synovitis in metacarpophalangeal	46
	joint (grade 1) ; with single-vessel PDUS signal	
Figure 4	Marked degree of active synovitis in wrist joint (grade	
	3); with PDUS vessel signals in more than half of the	47
	intraarticular area	
Figure 5	Percentage of ILAR categories presentation in study	57
Figure 6	Percentage of clinically affected joints in study	58
Figure 7	Percentage of different medications in different activity	60
	grades in study	
Figure 8	Percentage of US affected joints in study	61
Figure 9	US image of a knee joint with synovial hyperplasia	62
	reaching 4.5mm in thickness , no definite vascular	
	activity noted , mild joint effusion is also seen	
Figure 10	US image of an ankle joint with synovial hyperplasia,	62
	distance from joint capsule to the bone surface reaches	
	1cm with synovial hypertrophy and evident vascular	
	activity	
Figure 11	Percentage of different US affected joints in study	63
Figure 12	distribution of clinical and US synovitis in specific	66
	joints in study	

Figure 13	US image of a knee joint with synovial hyperplasia with moderate vascular activity	67
Figure 14	US image of the 1st M/P joint with mild synovial hyperplasia with moderate vascular activity	67
Figure 15	US image of a wrist joint with synovial hyperplasia with moderate vascular activity	68
Figure 16	kappa values for agreement between Swollen joints and US examination in study	69
Figure 17	kappa values for agreement between tender joints and US examination in study	69
Figure 18	Spearman correlation between clinical and US parameters count of joints in study	77
Figure 19	Spearman correlation between clinical laboratory and US parameters scores in study	78

INTRODUCTION

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children worldwide (Manners PJ, Bower C, 2002). It is a chronic inflammatory disease that affects about 1 of every 1,000 children worldwide (Ravelli A, Martini A, 2007).

Synovitis has a central role in the development of cartilage damage and bony erosion in JIA, and moreover therapeutic decisions are primarily influenced by the presence of synovitis on clinical examination. However, studies have shown that current techniques of clinical examination may underestimate significant joint inflammation (**Kane D**, et al, 2004).

Underrecognition of synovitis may lead to delayed diagnosis and treatment of joint disease. The issue of subclinical synovitis may be particularly relevant in JIA. In the current ILAR classification of JIA; oligoarthritis and polyarthritis are defined on a basis of the number of affected joints (</=4 or >4, respectively) (**Petty RE. et al , 2004**).

Therefore, the presence of subclinical disease in some joints may alter patient classification or affect the identification of patients requiring more aggressive or specific treatment.

US is increasingly used by clinicians for the evaluation of joint disease. It has been shown to be sensitive in the detection of synovitis and bone erosion in both small and large joints (**Grassi W, 2003**)

US has several advantages over other imaging methods, including noninvasiveness, rapidity of performance, relatively low cost, ability to scan multiple joints at one time, repeatability, safety, and high patient

acceptability. Another advantage of US is that it is the only imaging technique that can be coupled with the conventional clinical approach to the patient in the standard rheumatology setting.

Implementation of US in adult rheumatology clinical practice has been reported to have a significant effect on clinical decision making $(Karim\ Z, et\ al,\ 2001)$.

AIM OF THE WORK

The purpose of the this study is to compare clinical evaluation and US evaluation of synovitis, And to study the capability of US to assess disease activity and determine subclinical joint inflammation in children with JIA .

JUVENILE IDIOPATHIC ARTHRITIS

Definition and historical review:

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children worldwide with a range of clinical presentations and outcomes (Ravelli A and Martini A, 2007).

It is comprised of a heterogeneous group of several disease subtypes that are characterized by the onset of arthritis prior to the age of 16 years with symptoms that persist for more than 6 weeks (**Kim KH and Kim DS, 2010**).

The First detailed description of juvenile arthritis was made by Cornil in1864. By the end of the 19th century at least 38 case reports of arthritis in children had been published and reviewed by Diamant-Berger. He recognized differing subtypes of disease and attempted to classify at least three different patterns (i.e., acute, slow, and partial forms) of childhood arthritis. In1897. (**Lisabith V**, et al, 2004).

the pinnacle of description of childhood arthritis occurred, when George Frederic Still reported on 22 children with chronic arthritis and commented that childhood arthritis was more than one disease and mostly different from chronic arthritis as described in adults. Since these first publications, different names have been used

for the description of childhood arthritic diseases and different classification systems have been developed (Kirsten M, 2010).

American Rheumatism Association (ARA) criteria for the classification of juvenile rheumatoid arthritis (JRA) were made in 1972 and revised in 1977 (**Brewer EJ, et al. 1977**).

European League Against Rheumatism (EULAR) criteria for juvenile chronic arthritis (JCA) were made in 1978. International League of Associations for Rheumatology (ILAR) criteria for juvenile idiopathic arthritis (JIA) were made in Santiago in 1994, then revised in Durban, 1997, then had a second revision in Edmonton, 2001, last revision was in 2004 (**Stabile A, et al , 2006**)