EFFECT OF PUTRESCINE AND HUMIC ACID ON COTTON PLANT GROWING UNDER SALINITY STRESS CONDITIONS

 $\mathbf{B}\mathbf{v}$

MOHAMMAD GAZY ALOBAIDY

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Aleppo Univ., 2008

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Plant Physiology)

Department of Agricultural Botany
(Plant Physiology Section)
Faculty of Agriculture
Cairo University
EGYPT

2013

APPROVAL SHEET

EFFECT OF PUTRESCINE AND HUMIC ACID ON COTTON PLANT GROWING UNDER SALINITY STRESS CONDITIONS

M. Sc. Thesis
In
Agric. Sci. (Plant Physiology)

 $\mathbf{B}\mathbf{y}$

MOHAMMAD GAZY ALOBAIDY

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Aleppo Univ., 2008

APPROVAL COMMITTEE

Or. SAID AWAD MOHAMED SHEHATAProfessor of Plant Physiology, Fac. Agric., Ain Shams Universi	
Or. FARGHAL ABD-EL HAFIEZ ZEIDProfessor of Plant Physiology, Fac. Agric., Cairo University	
Or. AHMED HUSSIEN HANAFY AHMED Professor of Plant Physiology, Fac. Agric., Cairo University	

Date: / /

SUPERVISION SHEET

EFFECT OF PUTRESCINE AND HUMIC ACID ON COTTON PLANT GROWING UNDER SALINITY STRESS CONDITIONS

M. Sc. Thesis
In
Agric. Sci. (Plant Physiology)

By

MOHAMMAD GAZY ALOBAIDY

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Aleppo Univ., 2008

SUPERVISION COMMITTEE

Dr. AHMED HUSSIEN HANAFY AHMED Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. ESSAM MOHAMED ABDEL-MOATY DARWISH Lecturer of Plant Physiology, Fac. Agric., Cairo University Name of Candidate: Mohammad Gazy Alobaidy Degree: M. Sc.

Title of Thesis: Effect of putrescine and humic acid on cotton plant growing

under salinity stress conditions.

Supervisors: Dr. Ahmed Hussien Hanafy Ahmed

Dr. Essam Mohamed Abdel–Moaty Darweish

Department: Agricultural Botany **Branch:** Plant Physiology

Approval: / /

ABSTRACT

This experiment was carried out in the wire house as well as in the Plant Analysis Lab. of the Plant Physiology Section, Faculty of Agriculture, Cairo University, Giza, Egypt, during the two successive seasons (2011 and 2012) to determine the effects of putrescine and humic acid foliar applications on the growth, yield and chemical composition of Egyptian cotton (Gossypium barbadense L. cv. Giza 90) plants grown under saline soil conditions. A mixture of soil, clay: sand (1:1), was used as a plant growing media. Three different doses of putrescine (0, 1 and 2 ppm) and humic acid (0, 1 and 2%) were sprayed on plants; plants were sprayed eight times started at the day 45 after planting and repeated every 15 days. Before sowing cotton seeds, 0, 3000, 6000 and 9000 ppm of salt mixture (2 NaCl: 2 CaCl₂: 1 MgSO₄) were added into soil mixture in each pot. Salinity caused a significantly and gradually decreases in the growth characters, yield and its components and chemical compositions e.g., chlorophyll a, b, total chlorophyll, total carotenoids, N, P and K concentrations by increasing salinity level. While salt stress increased lint percentage, total sugars, total soluble phenols, total free amino acid, proline, Na, Cl, Ca and Mg concentrations. Applications of Put and HA positively affected cotton growth and yield under salt stress conditions. These treatments resulted in increase in morphological characters e.g., (plant height, root length, number of leaves/plant, leaf area/plant, number of fruiting branches/plant, number of flowers/plant, shoot and root fresh and dry weight). Also, Put and HA increase chemical constitutes related to salt tolerance either inorganic, (N, P and K), or organic constitutes e.g., proline, total free amino acids, total sugars, total soluble phenols, chlorophyll a, b, total chlorophyll and total carotenoids, while (Na, Cl, Ca and Mg) as well as lint percentage were decreased. As a result of promoting growth induced by previous foliar applications, yield components e.g.; number of total, open and closed bolls, seed cotton yield and seed index increased. Generally, Putrescine at 2 ppm and humic acid at 1% applications recorded the highest values of growth and yield characters.

Key word: Cotton, Salinity, Putrescine, Humic Acid, Growth characters, Fibers quality

DEDICATION

I dedicate this work to whom my heart felt thanks; to my wife Shefaa and my son Gazy for their patience and help, as well as to my parents, brothers and sisters for all the support they lovely offered along the period of my past graduation.

ACKNOWLEDGEMENT

First of all ultimate great thanks to ALLAH whose blessing on me and without his aid this work could not be done.

I wish to express my sincere thanks, deepest gratitude and appreciation to. Dr. Ahmed Hussien Hanafy Ahmed Professor of Plant Physiology Faculty of Agriculture Cairo University and Dr. Essam Mohamed Abdel-Moaty Darwish, Lecturer of Plant Physiology Faculty of Agriculture, Cairo University for supervision, continued assistance and their guidance through the course of study and revision the manuscript of this thesis.

Grateful appreciation is also extended to all staff members of Agricultural Botany Department and Plant Physiology Section Faculty of Agriculture, Cairo University, Egypt.

Special deep appreciation is given to my father, my mother, my wife, my son, my brothers and sisters. Also I feel deeply grateful to my dear country Syria.

I wish to thank all my colleagues and friends who offered me their help and encouragements.

LIST OF ABBREVIATIONS

Abbreviation	Meaning of abbreviation
ABA	Abscisic acid
CAT	Catalase
Chl.	Chlorophyll
cm	Centimeter
cv.	Cultivar
DAP	Days after planting
EC	Electrical conductivity
g	Gram
GA_3	Gibberellin
HA	Humic acid
HAS	Humic substances
IAA	Indole acetic acid
LSD	Least significant difference
mg	Milligram
mM	Millimolar
NSCCs	Non-selective cation channels
PAs	Polyamines
PBZ	1-benzylpiperazine
POD	Peroxidase
ppm	Part per million
PPO	Polyphenol oxidase
Put	Putrescine
Spd	Spermidine
Spm	Spermine

CONTENTS

	RODUCTION
REV	IEW OF LITERATURE
Effe	ct of salinity
	ct of polyamine
	ct of humic acid
MA	TERIALS AND METHODS
RES	SULTS AND DISCUSSION
1. E	ffect of soil salinity, putrescine and humic acid on
_	ant growth
	Plant height
	Number of leaves/plant
	Leaf area/plant
	Number of fruiting branches/plant
e.	Number of flowers/plant
f.	Shoot fresh weight
g.	Shoot dry weight
	Root length
i.	Root fresh weight
	Root dry weight
_	ffect of soil salinity, putrescine and humic acid on
	eld, yield components and fibre technology
-	easurements
a.	Number of total bolls
b.	Number of open bolls
c.	Number of closed bolls
d.	Boll weight
	Seed cotton yield/plant
	Seed index (%)
	Lint percentage (L%)
	Fibre length

i. Fibre stre	ength			
	re value			
3. Effect of so chemical co a. Photosyn	• • •			
U	ars concentratuble phenols o			
d. Total free	e amino acids	concentrati	on	
e. Proline co	oncentration .			
f. Nitrogen,	, phosphorus a	and potassit	ım perc	entages
,	sodium,			C
CONCLUSIO	ON			
SUMMARY				
REFERENC	CES			
ARABIC SU	JMMARY			

LIST OF TABLES

No.	Title	Pag
1.	Averages of some physico-chemical and mechanical analysis of experimental soil during two successive seasons of 2011 and 2012	63
2.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on plant height (cm) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons.	72
3.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on number of leaves/plant of <i>Gossypium barbadense</i> L.cv. Giza 90 during (2011 and 2012) seasons	77
4.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on leaf area/plant (cm²) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	80
5.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on number of fruiting branches/plant of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	82
6.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on number of flowers/plant of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) season	85
7.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on shoot fresh weight (g) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	87

8.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on shoot dry weight (g) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	92
9.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on root length (cm) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons.	96
10.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on root fresh weight (g) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	99
11.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on root dry weight (g) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	101
12.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on number of total bolls, open bolls and closed bolls/plant of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011and2012) seasons.	104
13.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on boll weight and seed cotton yield/plant (g) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	109
14.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on seed index (%) and lint percentage (L%) of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	114

15.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on fibre length (mm), fibre strength (g/tex) and fineness (Micronaire value) of <i>Gossypium barbadense</i> L. cv. Giza 90 for average of the two successive seasons (2011 and 2012)	117
16.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on chlorophyll a concentration (mg/g F.W) in leaves of <i>Gossypium barbadense</i> L. cv. Giza 90 during 2011 and 2012) seasons.	123
17.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on chlorophyll b concentration (mg/g F.W) in leaves of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons.	124
18.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total chlorophyll concentration (mg/g F.W) in leaves of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons.	125
19.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total carotenoids concentration (mg/g F.W) in leaves of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons.	126
20.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total sugars concentration (mg/g F.W) in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	129
21.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total sugars concentration (mg/g F.W) in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	131
	70 daring (2011 did 2012) sousons	1.5.1

22.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total soluble phenols concentration (mg/g F.W) in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012)	10-
23.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total soluble phenols concentration (mg/g F.W) in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	135 136
24.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total free amino acids concentration (mg/g F.W) in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	139
25.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on total free amino acids concentration (mg/g F.W) in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons.	140
26.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on proline concentration (mg/g D.W) in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	143
27.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on proline concentration (mg/g D.W) in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	144
28.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on nitrogen percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during	
	(2011 and 2012) seasons	147

148	9. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on nitrogen percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	2
149	D. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on phosphorus percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3
150	1. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on phosphorus percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3
151	2. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on potassium percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3
152	3. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on potassium percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3
154	4. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on calcium percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3
155	5. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on calcium percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3
156	5. Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on sodium percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	3

37.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on sodium percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	157
38.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on chloride percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	158
39.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on chloride percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during 2011) and 2012) seasons	159
40.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on magnesium percentage in shoots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	160
41.	Effect of putrescine Put (ppm), humic acid HA (%), soil salinity and their interaction on magnesium percentage in roots of <i>Gossypium barbadense</i> L. cv. Giza 90 during (2011 and 2012) seasons	161