

Role Of Advanced Oxidation Protein Products In Diabetic Micro-Vascular Complications

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics

By Ahmed Omar Khorshed Abdel Hamid M.B.B.Ch, Faculty of Medicine

Under Supervision of

Prof. Safinaz Adel El-Habashy

Professor of Pediatrics Faculty of Medicine-Ain Shams University

Dr. Hanan Hassan Ahmed Aly

Lecturer of Pediatrics Faculty of Medicine-Ain Shams University

Dr. Amr Fattouh Abdel Fattah

Lecturer of Clinical pathology Faculty of Medicine-Ain Shams University

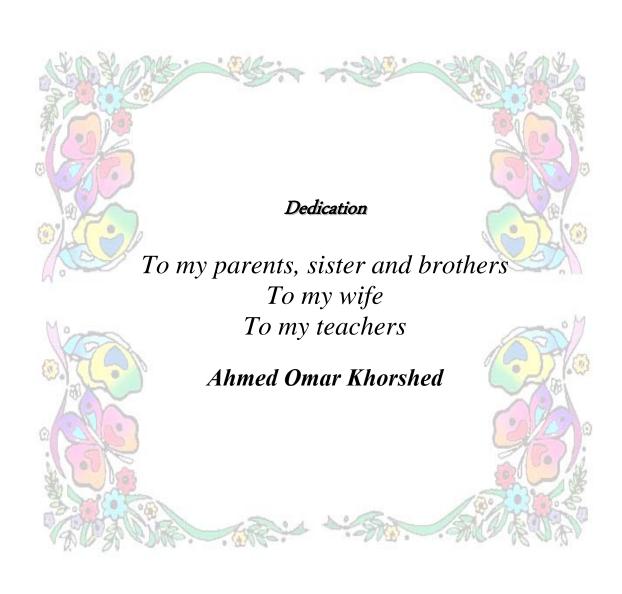
> Faculty of Medicine Ain Shams University

<u>ACKNOWLEDGEMENT</u>

First and foremost, thanks and praise **Allah**, most gracious, most merciful.

I wish to express my deepest appreciation & respect for **Professor Safinaz Adel El-Habashy**, Professor of Pediatrics, Faculty of Medicine-Ain Shams University, for her valuable guidance, generous encouragement and kind advice through out this work.

Also I wish to express my sincere thanks and deepest gratitude to **Dr. Hanan Hassan Ahmed Aly**, Lecturer of Pediatrics, Faculty of Medicine-Ain Sham University, for her support and continuous supervision during the work in this thesis.


I'm very grateful to **Dr. Amr Fattouh Abdel Fattah** Lecturer of Clinical Pathology, Faculty of Medicine-Ain Shams University, for his support and guidance.

I would like to thank **Dr. Wafaa Rasheed**, Assistant professor of medical Biochemistry.

I would like also to thank my patients and their parents for their cooperation and trust, and I wish them all the best of health.

Last but not by any means least, I would like to express my warm gratitude to my parents and my wife for their kindness, trust, unfailing support and much needed encouragement.

Ahmed Omar khorshed

LIST OF CONTENTS

	<u>Page</u>
Acknowledgment	
List of Abbreviations	I
List of Tables	III
List of Figures	IV
Protocol.	V
Aim of the work	VI
Abstract	VII
Review of Literature Diabetes Mellitus Advanced Oxidation Protein Products	
Subjects & Methods	99
Results	١٠٨
Discussion	١٣٠
Summary & Conclusion	1 ٤ ٤
Recommendations	1 £ 9
References	101
Arabic Summary	

LIST OF ABBREVIATIONS

ADA	American Diabetes Association
AGE	Advanced Glycation Endproducts
AOPP	Advanced Oxidation Protein Products
BD	Behcet's disease
CAD	Coronary Artery Disease
DCCT	Diabetes Control And Complications Trial
DKA	Diabetic Ketoacidosis
DN	Diabetic nephropathy
DR	Diabetic Retinopathy
ECM	Extra Cellular Matrix
ESRD	End Stage Renal Disease
HbA\c	Hemoglobin A\c
HNF	Hepatocyte Nuclear Factor
HOCL	Hypochlorous Acid
HSA	Human Serum Albumin
IPF	Insulin promoter factor
MCP-1	Monocyte Chemo-Attractant Protein-

MODY	Maturity-onset diabetes of the young
MPO	Myeloperoxidase
NADP	Nicotinamide adenine dinucleotide phosphate
NCEP-Peds	National Cholesterol Education Programme For Pediatrics
NPBI	Non Protein Bound Iron
OGTT	Oral glucose tolerance test
PKC	Protein Kinase C
RAGE	Receptors for AGE
ROS	Reactive Oxygen Species
SMBG	Self monitoring blood glucose
SUR	Sulphonylurea receptor \
T'DM	Type \ Diabetes Mellitus
VSMC	Vascular Smooth Muscle Cells

LIST OF TABLES

No.	Title	Page
١	Aetiological classification of disorders of glycemia	۲,۳,٤
۲	Criteria for the diagnosis of diabetes mellitus	٦
٣	Classification of diabetic retinopathy	٣٩
٤	Methods of prevention of type \ diabetes mellitus	0 £
0	Types of insulin preparations	٥٧
7	Comparison between patients and controls regarding age	١٠٨
٧	Sex distribution among studied groups	1.9
٨	Comparison between diabetic patients subgroups as regard duration of diabetes	• • •
٩	Comparison between diabetic patients subgroups regarding mean HbA\C	111
١.	Comparison between patients and controls regarding AOPP	117
11	Comparison between diabetic patients' subgroups regarding AOPP	١١٦
١٢	Comparison between complicated diabetic patients and controls regarding AOPP	۱۱۸
١٣	Comparison between non-complicated diabetic patients and controls regarding AOPP	119
١٤	Comparison between patients and controls regarding total cholesterol level	١٢.
10	Comparison between patients and controls regarding HDL levels	171

١٦	Comparison between patients and controls regarding LDL levels	177
١٧	Comparison between patients and controls regarding TG	١٢٣
١٨	Comparison between diabetic patients' subgroups patients regarding lipid profile	17 £
19	Correlation between AOPP and risk factors of diabetic complications	170

LIST OF FIGURES

No.	Figure	Page
١	Induction of ROS formation and oxidative stress in the development of diabetic micro-vascular complications	1 ٧
۲	Pathogenesis of diabetic vascular complications	77
٣	Development of nephropathy	٣١
٤	Development of retinopathy	٣٨
0	Relation between glycemic control and risk of micro-vascular complications	٤٠
7	Development of neuropathy	٤٦
Y	Prevalence of complications	٤٧
٨	Pie chart showing the distribution of micro-vascular complications	117
٩	Histogram showing mean values of AOPP	115
١.	Scattered diagram showing distribution of patients and controls as regards AOPP around the estimated cutoff	110
11	ROC curve analysis showing the diagnostic performance of AOPP for discriminating patients from controls	114
١٢	Correlation between AOPP and disease duration	١٢٦
١٣	Correlation between AOPP and HbA\c	177
١٤	Correlation between AOPP and cholestrol	١٢٨
10	Correlation between AOPP and TG	179

Protocol

INTRODUCTION

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels (American Diabetes Association., ** • • ** **).

Diabetes mellitus is associated with hyperglycemia and thus with accelerated non-enzymatic glycation, oxidative stress (imbalance between free radicals and reactive oxygen and nitrogen species, and antioxidants in favor of free radicals), and carbonyl stress. Through these mechanisms, Advanced Oxidation Protein Products (AOPP) are formed, and biologically important compounds are damaged (*Kalousova et al.*, $r \cdot r \cdot r$).

Advanced Oxidation Protein Products are formed during oxidative stress by the action of chlorinated oxidants, mainly hypochlorous acid and chloramines (produced by myeloperoxidase in activated neutrophils). They cause induction of proinflammatory cytokines and adhesive molecules (*Kalousova et al.*, **••***).

Studies report that advanced oxidation protein products are increased in patients with type ' diabetes mellitus in comparison with healthy subjects and that accelerated glycoxidation takes part in the development of diabetic complications (*Kalousova et al.*, **••***).

AIM OF THE STUDY

Assessment of Advanced Oxidation Protein Products (AOPP) in patients with type \ Diabetes mellitus to correlate their levels with occurrence of micro-vascular complications.

SUBJECTS AND METHODS

<u>Type of study</u>: cross-sectional case -control study.

Subjects:

Patients: Forty five children and adolescents with type ' diabetes mellitus will be recruited from the Pediatric Diabetes Specialized Clinic, Ain Shams University Hospitals.

Patients will be divided into:

Group : Twenty patients with diabetic microvascular complications (retinopathy, nephropathy and/or neuropathy).

Group 7: Twenty five patients without diabetic microvascular complications.

Controls: Thirty healthy subjects age and sex-matched will be included as control group.