STUDY ON THE IMPACT OF URBAN ENCROACHMENT OVER THE CULTIVATED LAND IN SOME DISTRICTS OF THE DELTA NILE USING REMOTE SENSING DATA AND GIS

By NAGWAN MAHMOUD MAHMOUD AFIFY

B. Arts and Education. (Geographic), Ain Sham University, 2000

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCSE
in
Agricultural Sciences
(Agriculture in desert and salt affected areas)

Arid land Agricultural graduate studies
And Research Institute
Faculty of Agriculture
Ain Shams University

2013

Approval sheet

STUDY ON THE IMPACT OF URBAN ENCROACHMENT OVER THE CULTIVATED LAND IN SOME DISTRICTS OF THE DELTA NILE USING REMOTE SENSING DATA AND GIS

By

NAGWAN MAHMOUD MAHMOUD AFIFY

B. Arts and Education. (Geographic), Ain Sham University, 2000

Thi	This thesis for M.Sc. degree has been approved by:			
Dr.	Afify Abbas Afify Head of Research. Emeritus of soils, Soil, Water and Environment Research Institute, Agricultural Research Center.			
Dr.	Usama Ahmed El-Behairy Prof. of vegetable crops, Faculty of Agriculture, Ain Shams University.			
Dr.	Abdel Aziz Saad Nasr Sheta Prof. Emeritus of soils science, Faculty of Agriculture, Ain Shams University.			
Dr.	Adel El-Sayed El-Beltagy			

Date of Examination: 19 / 11 /2013

STUDY ON THE IMPACT OF URBAN ENCROACHMENT OVER THE CULTIVATED LAND IN SOME DISTRICTS OF THE DELTA NILE USING REMOTE SENSING DATA AND GIS

By NAGWAN MAHMOUD MAHMOUD AFIFY

B. Arts and Education. (Geographic), Ain Sham University, 2000

Under the supervision of:

Dr. Adel El Sayed El Beltagy

Prof. Emeritus of vegetable crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Abdel Aziz Saad Nasr Sheta

Prof. Emeritus of Soils science, Department of Soils Science, Faculty of Agriculture, Ain Shams University.

Dr. Sayed Medany Arafat

Research Prof. of Soils, National Authority for Remote Sensing and Space Sciences.

ABSTRACT

Nagwan Mahmoud Mahmoud Afify: Study on the Impact of Urban Encroachment over the Cultivated Land in some Districts of the Delta Nile Using Remote Sensing Data and GIS, Unpublished MS.c. Thesis, Arid Land Agricultural Graduate Studies and Research Institute, Faculty of Agriculture, Ain Shams University, 2013.

The study area was selected in the districts of Quesna and Banha to represent the region of Nile delta for the assessment of urban expansion over the cultivated land. Two remote sensing data sets were used in the current study as Landsat Thematic Mapper (TM5) acquired in the year 1984 and SPOT4 acquired in both the years 1995 and 2011.

In the study area, the urban expansion is acting on a unique and valued agricultural land as characterized by flat surfaces including soils that are very deep, well drained and well-structured matrix. The physiographic units are deltaic alluvial plain including soils of *Typic Haplotorrerts*, *fine*; levees with *Typic Torriorthents*, *fine loamy*; Point bar with *Typic Torriorthents*, *fine loamy over sandy* and *Typic Torriorthents*, *coarse loamy*; sub deltaic outcrops with *Typic Torriorthents*, *sandy* and bow bar with *Typic Torriorthents*, *fine loamy*. These sediments have high land suitability for irrigated agriculture.

The urban expansion was monitored in the years 1984, 1995 and 2011. In Qusena study area, the urbanized areas were 2884, 3669 and 6642 feddans in the years 1984, 1995 and 2011 respectively. The loss of cultivated area by urban was 785 feddans (72 feddans per year) and 2973 feddans (186 feddans per year) within the durations from 1984 to 1995 and from 1995 to 2011 respectively leaving net cultivated area as 39194 feddans. In Banha study area the urbanized areas were 3188, 3790 and 6591 feddans. The loss of cultivated area was 602 feddans (55 feddans

per year) and 4868 feddans (175 feddans per year) within the durations from 1984 to 1995 and from 1995 to 2011 respectively, leaving net cultivated area as 28829 feddans.

Residual cultivated area in Quesna (net cultivated area) includes 40556, 39507 and 36194 feddans in the years 1984, 1995 and 2011 respectively. In Banha these residual cultivated areas were assessed as 34028, 33439 and 28829 feddans in the years 1984, 1995 and 2011 respectively.

The total cultivated study area (Quesna and Banha) is covering 88768 feddans. In this area, the urbanization denatured 6072, 7459 and 13233 feddans in the years 1984, 1995 and 2011 respectively. The loss of the cultivated area was 1387 feddans (126 feddans per year) and 5774 feddans (361 feddans per year) within the durations from 1984 to 1995 and from 1995 to 2011 respectively. The residual cultivated area (65023 feddans) will be most entirely denatured within 116 years ahead of the year 2011.

This problem must be seriously managed by a definite national public decision for keeping the cultivated Nile alluvium as a protectorate applying an obligatory law to restrict this urban extension as well as a daily control along the new constructed roads against the aligning urbanization attack. Activating attractive demographic movements from the Nile Delta to new society of formal productive agricultural land must be approached by successful socio-economic program.

Key Words:

Urban encroachment, Physiography, Soil, Delta Nile, Land cover, remote sensing and GIS data

ACKNOWLEDGEMENT

Special and sincere gratitude for **Prof. Dr. Adel El Sayed El Beltagy**, **Prof.** Emeritus of vegetables, Horticulture Department, Faculty of Agriculture, Ain Shams University for his scientific support and suggestions during this work.

I would like to thank **Prof. Dr. Abdel Aziz Saad Nasr Sheta**, Prof. Emeritus of soil science, in Soil Science Department, Faculty of Agriculture, Ain Shams University who has been a dedicated advisor, throughout my master studies. He has been aguidance for my academic work. giving valuable advices in all items of this work.

My sincere thanks extend to **Prof. Dr. Sayed Medany Arafat,** Prof. and Head of Agricultural Applications Department, National Authority for Remote Sensing and Space Sciences (NARSS) for supervising this work, providing suggestions, encouragement valuable data, facilities, and revision of all items of the work.

My greatest debt is to **Dr**. **Mohamed Seifeldeen Abd El-Wahed,** Lecturer of Soil Science, Soil Science Department, Faculty of Agriculture, Ain Shams University, for his continuous support, guidance, fruitful help in the field, in writing the thesis, and suggestions to improve and finalize this work.

Thanks are due to **Prof. Dr. Usama Ahmed El-Behairy** and all other members in Arid Land Agriculture Services and Research Center for their valuable supports

My great appreciation to my **Dear Father, Beloved Mother, My Husband, parents of my husband and my Children** for their patience and continuous encouragement during this time.

The authoress would like to express her gratitude to the National Authority for Remote Sensing and Space Sciences (NARSS) for providing all required facilities and remote sensing data for this work. I would like to express all deep thanks to my colleagues and friends at NARSS.

CONTENTS

	TABLES	
	FIGURES	\mathbf{V}
	ABBREVIATIONS	VII
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1	Climatic Data	3
2.2	Population in the study area	6
2.2.1	Average population in Qalubia and Menofia governorates	6
2.2.2	Average population in Banha and Quesna districts	7
2.3	The origin of Delta Nile sediments	9
2.4	Physiographic-soil attributes of Nile sediments	10
2.4.1	Terraced recent alluvial plain	10
2.4.2	Meandering river sediments	10
2.5	Land Cover Classification System (LCCS)	12
2.6	Urban encroachment over Nile sediments	17
2.6.1	The value of Nile sediments	17
2.6.2	The rate of urban encroachment in Egypt	18
2.7	Remote sensing	21
2.7.1	Principals of remote sensing	21
2.7.2	Digital Image Pre-Processing	22
2.7.3	Digital Image Processing	23
2.7.4	Digital Image Classification	24
2.7.5	Digital Image Post Classification	25
2.7.6	Classification Accuracy Assessment	25
2.8	Geographic Information System	26
2.8.1	Basic Concepts of GIS	26
2.8.2	GIS analysis and modeling	27
2.9	Remote sensing and GIS applications agriculture	28
3.	MATERIALS AND METHODS	32
3.1	Study Area Description	32

3.2	Data Source	34
3.2.1	Ancillary data	34
3.2.2	Satellite data	34
3.3	Data Pre-Processing	36
3.3.1	Geometric Correction	36
3.3.2	Image Sub-Setting	37
3.3.3	Image Enhancement	37
3.4	Data Processing	38
3.4.1	Digital Image Classification	38
3.4.2	Image post Classification	39
3.5	Field Work	41
3.6	Laboratory analysis	43
3.7	Physiographic unit delineation	43
3.8	Soil Classification and land Evaluation	43
3.9	Land Cover Classification	43
3.10	Accuracy assessment	44
3.11	The sequence of methodological approach	44
4.	RESULTS AND DISCUSSION	46
4.1	Evaluating the retreated River Nile sediments	46
4.1.1	Unique Physiographic Soil Attributes	46
4.1.2	High Land Suitability of Nile Alluvium for Irrigated Agriculture	51
4.2	Rating the urban encroachment in the study area.	53
4.2.1	Quesna district	53
4.2.2	Banha district	53
4.2.3	Total study area.	67
4.3	Assessment of the entire loss of the residual cultivated land	72
4.4	Relationship between population intensity and urban extension	74
4.5	Classification Accuracy Assessment Results	75
5.	SUMMARY AND CONCLUSION	76
6.	REFERENCES	79

TABLES

Table (1)	Climatic Elements of The Study Area.	4
Table (2)	Average population for Qaluopia and Monofia governorates (Data source from 2006-2013)	6
Table (3)	Average population in Banha and Quesna districts. (Data source from 1995-2013)	7
Table (4)	Coordinated Segments of Quesna District	32
Table (5)	Coordinated segments of Banha District	32
Table (6)	The Spectral specification of the spot 4 Data.	34
Table (7)	The Spectral specification of the TM5 Data.	34
Table (8)	Grain size distribution of the soils in the study area.	49
Table (9)	Chemical analyzes of the soils in the study area.	50
Table (10)	Collective physiographic- soil attributes versus land suitability for agriculture	52
Table (11)	Land cover distribution (feddan) in Quesna study area in the monitored years	54
Table (12)	Rating changes of land cover classes per duration versus cultivated areas for Quesna.	54
Table (13)	Land covers distribution (feddan) in Banha study area in monitored years.	61
Table (14)	Rating changes of land cover classes(feddan) per duration versus cultivated areas for Banha.	61
Table (15)	Land covers distribution (feddan) for the total study area in the monitored years.	68
Table (16)	Rating changes of land cover classes per duration versus cultivated areas for the total study area.	68
Table (17)	Assessment of the residual cultivated area (feddans) and the duration (years) of entire loss ahead of 2011	73
Table (18)	Relationship of population and urban changes in Banha and Quesna districts	74

Table (19)	Confusion matrix for the land covers classification for	76
	2011after refined.	
Table (20)	Accuracy totals for the classified images.	76

FIGURES

Fig. (1)	Climatic state as reflected by rainfall, temperature	5
	and evapotranspiration.	
Fig. (2)	Population developments through 1995 to 2013 of	8
	Banha	
Fig. (3)	Population developments through 1995 to 2013 of	8
	Quesna	
Fig. (4)	Land covers classification system (LCCS) phases.	13
Fig. (5)	Location map of the study area A: collective area, B:	33
	Quesna District and C: Banha district	
Fig. (6)	Sub-scenes covering the study area (Banha and	35
	Quesna districts).	
Fig. (7)	Histogram Equalization function (After ERDAS	38
	Field Guide, 2009)	
Fig. (8)	Focal operations of neighborhood function (After	40
	ERDAS Field Guide, 2009)	
Fig. (9)	Soil profile sites in the study area	42
Fig. (10)	Flow chart indicating the approach and the used methods and tools.	45
Fig. (11)	Suitability classes of physiographic-soil attribute for Agricultural land use in the study area.	48
Fig. (12)	Urban expansions in Quesna study area (1984)	55
Fig. (13)	Urban expansion in Quesna study area (1995)	56
Fig. (14)	Urban expansion in Quesna study area (2011)	57
Fig. (15)	Land cover distribution of Quesna study area in	58
	1984	
Fig. (16)	Land covers distribution of Quesna study area in 1995	58
Fig. (17)	Land covers distribution of Quesna study area in	59
	2011	
Fig. (18)	Change Detection of Land cover distribution (-/+ %)	59
	in Quesna study (1984-2011)	

Fig. (19)	Linear features (canals, roads and railway in the study	60
	area).	
Fig. (20)	Urban expansion in Banha study area (1984)	62
Fig. (21)	Urban expansion in Banha study area (1995)	63
Fig. (22)	Urban expansion in Banha study area (2011)	64
Fig. (23)	Land cover distribution of Banha study area in 1984	65
Fig. (24)	Land cover distribution of Banha study area in 1995	65
Fig. (25)	Land cover distribution of Banha study area in 2011	66
Fig. (26)	Change Detection of Land cover distribution (-/+ %)	66
	in Banha study (1984-2011)	
Fig. (27)	Urban expansion in the study area (1984)	69
Fig. (28)	Urban expansion in the study area (1995)	70
Fig. (29)	Urban expansions in the study area (2011)	71
Fig. (30)	Population and urban changes from 1995 to 2011 in	75
	the study area	

ABBREVIATIONS

EC : Electrical conductivity.

ERDAS : Earth Resources Data Analysis System.

ET : Evapotranspiration.

FAO : Food and Agriculture Organization.

GPS : Geographic Positioning System.

GCPs : Ground Control Points.

GIS : Geographic information system.

ISODATA: The Iterative Self-Organizing Data analysis technique.

LCCS : Land Cover Classification System.

RMSE : Root Mean Square Error.

RS : Remote sensing.

SAR : Sodium Adsorption Ratio.

SWIR : Short Wave Infra-Red.

TIR : Thermal Infra-Red.

TM : Thematic Mapper.

USDA: United States Department of Agriculture.

USGS : United States Geological Survey.

UTM: Universal Transfer Mercator.

WGS : World Geodetic System.

WMO : World Meteorological Organization.