

أَنْرُفَعُ لَرَجَاتٍ مِّن نَشَاءُ وَفَوْقَ كُلِّ نَدِي عِلْمِ عَلِيهُم

صَّنْ إِن اللهُ العِظَمِينَ،

سورة يوسف (76)

Faculty of Science Biochemistry Department

Biological Evaluation of Some Medicinal Plant Extracts Against Neuroinflammation Characterizing Alzheimer's Disease In Experimental Rat Model

Thesis Submitted by Soheir El Sayed El Sayed Kotob

(B.Sc. 2003, M.Sc. 2008 in Biochemistry)

In Fulfillment for the Degree of Doctor of Philosophy (PhD) of Science in Biochemistry

Supervisors

Prof/ Ahmed Mohammed Salem

Professor of Biochemistry

Biochemistry Department

Faculty of Science

Ain Shams University

Prof/ Hanaa Hamdy Ahmed

Head of Hormones Dept.

Hormones Department

Medical Research Division

National Research Centre

Prof/ Gilane Mohamed Sabry

Professor of Biochemistry

Biochemistry Department

Faculty of Science

Ain Shams University

Prof/ Ahmed Abdel Fatah Hussein

Prof. of Chemistry of Medicinal Plants

Chemistry of Medicinal Plants Dept.

Pharmaceutical and Drug Industries

Research Division

National Research Centre

Ain Shams University

Faculty of Science

Department of Biochemistry

(2014)

Acknowledgement

I would like to express my deepest gratitude to Prof. Ahmed Mohammed Salem, Professor of Biochemistry, Faculty of Science, Ain Shams University, for supervising the present work and his guidance, encouragement and continuous support throughout the course of this study and for reading and criticizing the manuscript. His valuable guidance and ultimate support are greatly appreciated.

Special thanks to Prof. Gilane Mohamed Sabry, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her help, encouragement and direct sincere guidance throughout the present investigation and for her help during the preparation of the current study.

I am heartily thankful to Prof. Hanaa Hamdy Ahmed, Professor of Hormones, Hormones Department, Medical Research Division, National Research Centre, whose encouragement, guidance and support from the initial to the final level enabled me to develop this work. I cannot adequately express in words my appreciation and thanks to her for suggesting the problem, planning, reading and criticizing the manuscript, valuable supervision, constructive criticism, helpful discussion, time and great effort spent throughout the course of the current study.

My deepest thanks are to prof. Ahmed Abdel Fatah Hussein, Professor of Chemistry of Medicinal Plants, Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, for his guidance and cooperation in providing the studied medicinal plant extracts and carrying out the phytochemical studies in the current study.

A lot of thanks to Prof. Emad Fawzy Eskander, Professor of

Chemistry, Hormones Department, Medical Research Division, National Research Centre, for his assistance, sincere advise and encouragement throughout the time of the current study.

I am especially indebted to Prof. Adel Bakeer Kholoussy, Professor of pathology Faculty of Veterinary Medicine, Cairo University for his kind cooperation in conducting histopathological investigations in the current study.

Finally, I would like to express my deepest gratitude to the project team entitled "Development of Natural Drugs for Treatment of Neurodegenerative Diseases" which was funded from Academy of Scientific Research and Technology for funding and support the present work.

Soheir El sayed El sayed Kotob

Abstract

The current study was designed to explore the potent role of four medicinal plants namely Salvia triloba, Piper nigrum, Ruta graveolens and Pegenum harmala in management neuroinflammatory insults characterizing Alzheimer's disease (AD) in experimental rat model. This aim was achieved by performing acute and chronic toxiciological study for the selected medicinal plant extracts. The preclinical toxicological study for the selected medicinal plant extracts (Part I) was conducted from one hundred and sixty eight adult Sprague Dawley rats (eighty four male and eighty four female). On the other hand, the pharmacological study (Part II) was conducted from one hundred and ten adult male Sprague Dawley rats were classified into seven main groups: (1), control group; (2), ADinduced group in which the rats were orally administered with aluminum chloride (AlCl₃) (17 mg/kg b. wt) daily for one month (3), AD-induced group treated orally with Rivastigmine, the conventional therapy for AD (0.3 mg/kg b. wt) daily for three months; (4), ADinduced group which was further divided into two subgroups, the first subgroup was treated orally with S. triloba methanolic extract (750 mg/kg b. wt) and the second subgroup was treated orally with S. triloba (375 mg/kg b. wt) daily for three months; (5), AD-induced group which was further divided into two subgroups the first subgroup was treated orally with *P. nigrum* methanolic extract (187.5) mg/kg b. wt) and the second subgroup was treated orally with P. nigrum (93.75 mg/kg b. wt) daily for three months; (6), AD-induced group which was further divided into two subgroups, the first subgroup was treated orally with R. graveolens methanolic extract (750 mg/kg b. wt.) and the second subgroup was treated orally with R.

=

graveolens (375 mg/kg b. wt.) daily for three months and (7), ADinduced group which was divided into two subgroups the first subgroup was treated orally with P. harmala methanolic extract (375 mg/kg b. wt.) and the second subgroup was treated orally with P. harmala (187.5 mg/kg b. wt.) for daily for three months. Brain acetylcholine (ACh), brain and seum acetycholinesterase (AChE) activities, C-reactive protein (CRP), total nuclear factor Kappa B₆₅ $(NF-kB_{65}),$ monocyte chemoattractant protein-1 (MCP-1),cyclooxygenase-2 (COX-2), leukotriene B₄ (LTB₄) and B-cell lymphoma 2 (Bcl-2) levels were estimated. Histological investigation of brain sections of all studied groups were also carried out. The present results revealed that administration of AlCl₃ resulted in significant elevation in brain and serum AChE, CRP, NF kappa B, MCP-1, COX-2 and LTB₄ levels accompanied with significant depletion in brain Ach as well as brain and serum Bcl2 levels. Histological investigation of the brain of rats administered AlCl₃ showed the appearance of β -amyloid (A β) plaques characterizing AD. However, treatment of rats with the selected extracts produced marked improvement in the measured biochemical parameters as well as in the histological feature of the brain. The present study suggested that the studied medicinal plant extracts have a different degree of potentiality in alleviating AD. This promising effect was achieved through their powerful anti-cholinesterase activity, anti-inflammatory property and anti-apoptotic capacity. The current study represented good therapeutic approach for intervention against progressive neurological damage associated with AD.

Keywords: Alzheimer's disease, *Salvia triloba, Piper nigrum, Ruta graveolens, Pegenum harmala,* Inflammation, Apoptosis, Rat.

=

List of Content

Title	Page
	no.
1. INTRODUCTION	1-4
2. AIM OF THE WORK	5
3. REVOEW OF THE LITERATURE	6
3.1. Alzheimer's disease	6
3.1.1. Definition	6
3.1.2. History	6
3.1.3. Epidemiology	7
3.1.4. Clinical features	10
3.1.5. Neuropathological phenotype of AD	15
3.1.6. Amyloid homeostasis, Aβ clearance from the brain	16
3.1.7. Aβ generation, aggregation and deposition	18
3.1.8. Neurofibrillary tangles (NFTs)	24
3.1.9. Diagnosis	28
3.1.10. Risk factors for AD & Etiology	30
3.2. ALUMINIUM	39
3.2.1. Sources of Al	39
3.2.2. Aluminum and AD	42
3.3. AD and Oxidative stress	53
3.4. AD and inflammation	54
3.4.1. C-reactive protein (CRP)	58
3.4.2. Nuclear factor kappa B (NF-κB)	59
3.4.3. Monocyte chemoattractant protein-1 (MCP-1)	62
3.4.4. Eicosanoids Cyclooxygenase (COX) and Lipoxygenase (LOX)	66
3.5. Apoptosis and AD	74
3.5.1. B-cell lymphoma-2 (Bcl-2)	75

3.6. Treatment Strategies	78
3.6.1. Current therapy for AD	78
3.6.2. Anti-inflammatory Agents	81
3.6.3. Nonsteroidal anti-inflammatory drugs (NSAIDs)	82
3.7. Medicinal plant therapy	83
3.7.1. Salvia triloba	84
3.7.1.1. Morphological description	84
3.7.1.2. Chemical constituents	85
3.7.1.3. Biological activities	87
3.7.2. Piper nigrum	91
3.7.2.1. Morphological description	91
3.7.2.2. Chemical constituents of <i>piper</i> species	92
3.7.2.3. Biological activities	93
3.7.3. Ruta graveolens	95
3.7.3.1. Morphological description	95
3.7.3.2. Chemical constituents	96
3.7.3.3. Biological activity	97
3.7.4. Pegenum harmala	100
3.7.4.1. Chemical constituents	100
3.7.4.2. Biological activities	102
4. MATERIALS AND METHODS	106
4.1. PART I: PRECLINICAL TOXICOLOGICAL STUDIES FOR	106
THE SELECTED NATURAL PRODUCTS	
4.1.1. Materials	106
4.1.1.1. Plants	106
4.1.1.2. Experimental animals	106
4.1.2. Methods	107
4.1.2.1. Plant extraction	107
4.1.2.2. Alcoholic extraction of the selected plants	107

4.1.2.3. Study design	107
4.1.2.3.1. Sage (Salvia triloba L.)	108
a- Protocol for an Acute Toxicity Study	108
b- Protocol for a Chronic Toxicity Study	108
4.1.2.3.2. Black pepper (<i>Piper nigrum</i>)	108
a- Protocol for an Acute Toxicity Study	108
b- Protocol for a Chronic Toxicity Study	109
4.1.2.3.3. Ruta graveolens L.	109
a- Protocol for an Acute Toxicity Study	109
b- Protocol for a Chronic Toxicity Study	109
4.1.2.3.4. Peganum (Pegenum harmala)	109
a- Protocol for an Acute Toxicity Study	109
b- Protocol for a Chronic Toxicity Study	110
4.1.2.4. Hematological methods	110
4.1.2.4.1. Quantitative measurement of blood hemoglobin	110
concentration	
4.1.2.4.2. Quantitative estimation of White blood cells Count	112
4.1.2.5. Biochemical analyses	113
4.1.2.5.1. Quantitative determination of serum aspartate	113
aminotransferase (AST) activity	
4.1.2.5.2. Quantitative determination of Serum Alanine	114
Aminotransferase (ALT) activity	
4.1.2.5.3. Quantitative determination of serum alkaline phosphatase	116
(ALP) activity	
4.1.2.5.4. Quantitative estimation of serum urea level	117
4.1.2.5.5. Quantitative estimation of serum creatinine level	119
4.1.2.6. Histopathological examinations	120
4.2. PART II: BIOCHEMICAL STUDY	121
4.2.1. Materials	121

A) Chemical and drug	121
B) Plants:	121
C) Experimental Design:	121
4.2.2. Methods	124
4.2.2.1. Plant extraction	124
4.2.2.2. Alcoholic extraction of the selected plants	124
4.2.2.3.Biochemical Analyses	124
4.2.2.3.1. Quantitive estimation of brain acetylcholine (ACh) level	124
4.2.2.3.2. Estimation of brain and serum acetylcholinesterase	127
(AChE) activity	
4.2.2.3.3 Quantitative estimation of brain and serum High sensitivit	128
C-reactive protein (hcCRP)	
4.2.2.3.4. Estimation of serum and brain Total NF-κBp65	131
4.2.2.3.5. Estimation of serum and brain monocyte chemoattractan	137
protein-1 (MCP-1) levels	
4.2.2.3.6. Estimation of serum and brain COX-2 level	142
4.2.2.3.7. Estimation of serum and brain LTB ₄ level	146
4.2.2.3.8. Estimation of B-cell lymphoma 2 (Bcl-2)	152
4.2.2.3.9. Determination of brain total protein	155
4.2.2.4. Histological Examination	157
4.3. Statistical analyses	157
5. RESULTS	158
5.1. PART I: PRECLINICAL TOXICOLOGICAL STUDIES ON	158
THE SELECTED NATURAL PRODUCTS	
5.1.1. Acute Toxicity Study	158
A. Salvia triloba L.	158
B. Piper nigrum	158
C. Ruta graveolens L.	158
D. Pegenum harmal:	159

5.1.1.2. Chronic Toxicity Study	159
A) Hematological and Biochemical Analyses Results	159
B) Liver and Kidney function screening	161
C) Histopathological results of rats liver in chronic	165
toxicity of the selected medicinal plants extracts	
5.2. PART II: BIOCHEMICAL STUDIES AND	170
HISTOPATHOLOGICAL INVESTIGATIONS OF THE	
SELECTED MEDICINAL PLANTS	
A) Biochemical Analyses	170
a) Effects of treatment with the selected medicinal plants total	170
extracts on cholinergic markers on AD-induced rats	
b) Effects of treatment with the selected medicinal plants total	173
extract on brain and serum inflammatory markers level on AD-	
induced rats	
c) Effect of treatment with Rivastigmine and the selected	180
medicinal plants total methanolic extract on brain and serum	
Bcl-2 levels in AD-induced rats	
B) Histological investigations	182
6. DISCUSSION	188
7. SUMMARY AND CONCLUSION	223
8. REFERENCES	227
9. ARABIC SUMMARY	334

List of Abbreviations

4-HAD 4-hydroxyalkenals

5-HPETE 5-hydroperoxy eicosatetraenoic acid

5-LOX 5-lipoxygenase

9-me-BC 9-methyl-b-carboline

AA Arachidonic acid

ACE Angiotensin converting enzyme

Acetyl-CoA Acetyl coenzyme A

ACh Acetylcholine

AChE Acetylcholinesterase

AChIs Acetylcholinesterase inhibitors

AD Alzheimer's disease.

AGEs Advanced glycation endproducts

AICD APP intracellular domain

AIF Apoptosis inducing factor

AlCl₃ Aluminium chloride

ALP Alkaline phosphatase

ALT Alanine Aminotransferase

ANOVA One way analysis of variance

ApoE Apolipoprotein E gene

ApoE $\varepsilon 4$ ε 4 allele apolipoprotein E genotype

APP Amyloid precursor protein

AST Aspartate aminotransferase

Aβ Amyloid β

BACE1 β -site APP-cleaving enzyme

BACE1 Beta-site amyloid precursor protein cleaving

enzyme

Bad B cell lymphoma 2 associated death promoter

Bak B cell lymphoma 2 homologous antagonist

killer

Bax B cell lymphoma 2 associated x protein

BBB Blood brain barrier

BChE Butyrlcholinesterase

Bcl-2 B-cell lymphoma-2

Bcl-xl B cell lymphoma 2 extra large

BCs β-carbolines

BDNF Brain derived neurotrophic factor

BIF Brain interstitial fluid

C/EBP b cytidine-cytidine-adenosine-adenosine-

thymidine Enhancer Binding Protein Beta

CAA Congophilic amyloid angiopathy

CAT Catalase

CCR2 CCL2 (MCP-1) receptors

CDC Center for Disease Control

Cdk5 Cyclin dependant kinase 5

ChAT Cholineacetyltransferase

ChAT Choline acetyl transferase

CMH Cyanomethemoglobin

CNS Central Nervous System

COX-2 Cyclooxygenase-2

cPLA2 Cytosolic phospholipase A2

CREB cAMP response element-binding

CRP C-reactive protein

CSF Cerebrospinal fluid

CT Computerized tomography

CT Cryptotanshinone

 α -CTF α C- terminal fragment

CTS Cryptotanshinone

CYP4Fs Cytochrome P450 4Fs

DLA 3,4-Dihydroxyphenyl lactic acid

DNPH 2, 4- Dinitrophenyl hydrazine

DT 15, 16-Dihydrotanshinone I

ECE1 Endothelin converting enzyme 1

EEG Electroencephalogram

EOAD Early onset Alzheimer's disease

EOFAD Early onset famlial Alzheimer's disease

EPA Environmental Protection Agency

FAβ Fibrillar Amyloid β

FLAP 5-Lipoxygenase activating-protein

G-6-PD Glucose-6-phosphate dehydrogenase

GFAP Glial fibrillary acidic protein

GR Glutathione reductase

GSK3β Glycogen synthase kinase 3 beta

 H_2O_2 Hydrogen peroxide

hcCRP High sensitivity C-reactive protein

HRT Hormone replacement therapy

HUVECs Human umbilical vein endothelial cells

ICAM-1 Intercellular adhesion molecule-1

IDE Insulin degrading enzyme

IFN- γ Interferon- γ

IGF-1 Insulin-like growth factor-1

IkB Inhibitory kappa B

IL-1β Interleukin-1 β

iNOS Inducible nitric oxide synthase

JNK *c-Jun* N-terminal kinase

LDH Lactate dehydrogenase

LOAD Late onset Alzheimer's disease

LPS Lipopolysaccharide

LRP1 Low-density lipoprotein receptor-related

protein 1

LSD Least significant difference

LT Leukotrienes

LTB₄ Leukotrienes B₄

mAChR Muscarinic acetylcholine receptors

MAO Monoamine oxidase

MAP Microtubule associated protein

MAPK Mitogen activated protein kinases

MAPK Mitogen-activated protein kinase

MCI Mild cognitive impairment

MCI Mild cognitive impairment

MCP-1 Monocyte chemotactic protein-1

MCP-1 (CCL2) Monocyte chemoattractant protein-1

MDMs Monocyte-derived microglia

MLB Magnesium lithospermate B

MMP9 Matrix metalloprotease 9

MMSE Mini-Mental Status Examination

MRI Magnetic resonance imaging

nAChR Nicotinic acetylcholine receptors

NEP Neprilysin

NF-kB Nuclear factor kappa B

NFTs Neurofibrillary tangles

NGF Nerve growth factor

NINCDS-ADRDA National Institute of Neurologic and

Communicative Disorders and Stroke- AD