BOND STRENGTH OF GUTTA PERCHA ROOT CANAL FILLING TO DENTIN AFTER DIFFERENT IRRIGATION PROTOCOLS

Thesis

Submitted to Endodontic department

Faculty of dentistry, Ain Shams University

In partial fulfillment of the requirements of

Master degree in Endodontics

By

Samah Ahmed Abd el Aziz

(B.D.S)

Faculty of Dentistry Ain Shams University (2002)

2013

Supervised by

Prof. Ahmed Abdel Rahman Hashem

Professor of Endodontics,
Faculty of Dentistry, Ain Shams University

Dr. Maram Farouk Obeid

Lecturer of Endodontics
Faculty of Dentistry, Ain Shams University

تحت اشراف

أ.د/ أحمد عبدالرحمن هاشم أستاذ علاج الجذور كلية طب الأسنان جامعة عين شمس

د/ مرام فاروق عبيد مدرس علاج الجذور كلية طب الأسنان جامعة عين شمس 2013

قياس قوة الرابطة بين مادة الجتا بركا لحشو الجذور وعاج الأسنان بعد استخدام محاليل مختلفة لغسيل قنوات الجذور

رسالة

لكلية طب الأسنان جامعة عين شمس للحصول على درجة الماجستير في علاج الجذور

مقدمة من الطبيبه سماح أحمد عبدالعزيز بكالوريوس طب وجراحة الفم والأسنان جامعة عين شمس

{ قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ}

صدق الله العظيم سورة البقرة اية 32

ACKNOWLEDGEMENT

First of all thanks and praise to *Allah*, who gives me everything, enable me to complete this work.

I am extremely fortunate to have the opportunity to work under the kind guidance of *Prof. Ahmed Abdel Rahman Hashem*, *Prof of Endodontics*, *Faculty of Dentistry–Ain Shams University*. I am greatly honored to express my deepest thanks for his indispensible support.

I was lucky to work under supervision of **Dr. Maram Obeid**, Lecturer of Endodontics, Faculty of Dentistry – Ain Shams University, who helped me a lot during my study; I would like to express my deepest appreciation for her support.

I would like to thank my family who gave me unconditional encouragement and support (thanks my beloved husband & children). I would like to dedicate my work to my beloved father & mother.

CONTENT

	Page
Introduction	1
Review of Literature	4
Effect of different irrigants on bond strength	4
Bonding of epoxy based resin to dentin	45
Aim of the study	55
Materials and methods	56
Results	72
Discussion	97
Conclusion Summary	104
References	107
Arabic summary	1

LIST OF TABLES

TABLE	NAME	₽
1	Classification of the Samples	60
2	Descriptive Data	73
3	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength of the six groups at the coronal segment	74
	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength of the six groups at the middle segment	76
5	Means, standard deviation (SD), values (in MPa), and results of comparison between push-out bond strength of the six groups at the apical segment	78
6	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength at the three segments of NaOCl group	79
	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength at the three segments of EDTA group	81
8	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength at the three segments of EDTA + CHX group	82

9	Means, standard deviation (SD) values (in MPa), and results of comparison between pushout bond strength at the three segments of MTAD group	84
10	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength at the three segments of MTAD + CHX group	85
11	Means, standard deviation (SD), values (in MPa), and results of comparison between pushout bond strength at the three segments of CHX group	86
12	Distribution of failure modes found in the cervical, middle and apical thirds of each group after the push-out test	88
13	Percentage of mode of failure found in each group after the push-out test	89

LIST OF FIGURES

FIGURE	NAME	P
1	Coronal, middle, and apical root sections were cut after setting of the	66
	acrylic resin	
2	The loading fixture	66
3	Schematic diagram for the loading fixture used in the push-out test	67
4	Different plungers used in the push out test	68
5	Loading of the tested sample using Instron testing machine	69
6	Bar chart representing the overall mean push-out bond strength of the six groups	75
7	Bar chart representing mean push-out bond strength of the six groups at the coronal segment	
8	Bar chart representing mean push-out bond strength of the six groups at the middle segment	78
9	Bar chart representing mean push-out bond strength of the six groups at the apical segment	

11 -		
10	Bar chart representing mean push-out	81
	bond strength at the three segments of	
	NaOCl group.	
11	Bar chart representing mean push-out	82
	bond strength at the three segments of	
	EDTA group	
12	Bar chart representing mean push-out bond	83
	strength at the three segments of EDTA +	
	CHX group	
13	Bar chart representing mean push-out	84
	bond strength at the three segments of	
	MTAD group	
14	Don about managenting many much out	86
14	Bar chart representing mean push-out	00
	bond strength at the three segments of	
	MTAD + CHX group	
15	Bar chart representing mean push-out	88
	bond strength at the three segments of	
	CHX group	
16	Scanning electron microscope showing the	90
	mixed mode of failure; in NaOCl group	
17	SEM showing mixed mode of failure; in	
	NaOCl group	
18	SEM showing mixed mode of failure; in the	91
	EDTA group, where the surfaces of dentin	
	were partially covered by sealer or gutta-	
	percha after the push-out test	

19	SEM showing mixed mode of failure; in the	91
	EDTA group, where the surfaces of dentin	
	were partially covered by sealer or gutta-	
	percha after the push-out test	
20	SEM showing mixed mode of failure; in the	92
	EDTA+CHX group	
21	SEM showing adhesive mode of failure; in the	92
	EDTA+CHX group	
22	SEM showing mixed mode of failure; in the	93
	EDTA+CHX group	
23	Scanning electron micrograph showing the	93
	mixed mode of failure in MTAD group	
24	Scanning electron micrograph showing the	94
	mixed mode of failure in MTAD group	
25	SEM showing mixed mode of failure; in the	94
	MTAD+CHX group	
26	SEM showing mixed mode of failure; in the	95
	MTAD+CHX group	
27	SEM showing mixed mode of failure; in the	95
	CHX group	
28	SEM showing mixed mode of failure; in the	95
	CHX group	

The main objectives of root canal therapy; are removal of diseased tissue, elimination of microorganisms present in the canals and prevention of recontamination after treatment. Current techniques of root canal debridement leave many areas of the root canal system completely untouched by instruments. Thus, a root canal irrigant is needed to aid in debridement.

Studies show that currently used methods instrumentation especially, Rotary; produce smear layer that covers root canal walls and obliterate the openings of the dentinal tubules. The smear layer consists of organic and inorganic substances, including fragments of odontoblastic processes, microorganisms and necrotic materials. This layer prevents penetration of intracanal medications and also prevents complete adaptation of obturation materials to the prepared root canal surfaces. Various organic acids, ultrasonic instruments, and lasers have been used to remove the smear layer.

In the last years various irrigant materials were introduced to be used in the procedure of root canal cleaning either alone or in combination and they were evaluated according to their cleaning ability, antimicrobial effect, their penetration, lubrication and their ability to remove the smear layer. The effect of irrigants in root canal biomechanical preparation is

not only limited to their effect on pulp tissue and microorganisms but it also extends to the chemical composition of dentin surface so it affects the bond strength between dentin and different obturating materials.

Sodium hypochlorite (NaOCl) is still widely used in different concentrations due to its effective antimicrobial action, dissolution of organic material, transformation of amines into chloramines as well as its deodorizing effects and ease of removal from the canal. At high concentrations it is toxic and irritant to the tissues .

Chlorhexidine (CHX) is an effective oral antimicrobial agent. It shows a broad-spectrum antimicrobial effect, substantivity and low toxicity but it doesn't dissolve organic material. Its effect is comparable to NaOCl. Ethylene diamine tetra acetic acid (EDTA) is a chelating agent used for removal of the inorganic part of smear layer, different studies have shown that EDTA can remove the smear layer and result in dentinal tubules opening. Citric acid is used for removal of the inorganic part of smear layer and also results in dentinal tubules opening. MTAD is a new irrigating solution; a mixture of tetracycline isomer, an acid, and a detergent which is capable of safely removing the smear layer and effectively eliminating Enterococcus faecalis.