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Abstract 
 
 
        Boolean algebra forms the backbone of computer science and digital 
system design. Most of problems such as digital logic design, testing, 
artificial intelligence are expressed by a sequence of operations on Boolean 
function. 
BDD’s as a data structure for representing of Boolean functions were first 
popularized by [Ake 78] and [Mor 82]. Then they gained a widespread use 
after the restricted form ROBDD was presented by [Bry 86] because of its 
canonical representation form and manipulation efficiency. Due to the BDD 
size sensitivity to the variable ordering, a big effort was made toward the 
generalization of the OBDD structure to obtain more compact 
representations, by optimizing the variable ordering. There are examples 
that show exponential gabs in the sizes of functionally equivalent ROBDDs 
which differ only in their variable orderings. Since the problem of finding 
an optimal variable ordering is known to be NP-hard and there is a lack of 
knowledge about the approximability of the problem, there is a strong need 
for good working heuristics. 
This thesis is focused on finding good variable ordering to optimize and 
accelerate the construction of BDD in three different directions. Those 
directions depend on the most popular heuristic, sifting, introduced by [Rud 
93]. The basic idea behind the sifting algorithm is to look for the best 
position for each variable by moving it through the whole ordering one 
position at a time. The basic operation used to implement these movements 
is the exchange of two adjacent variables (swapping operation) which takes 
a time proportional to the number of nodes labeled by the swapped 
variables. The total time for sifting grows very fast with the number of 
variables, Lets consider only one variable move over a thousand of variables 
and we can see clearly that it takes too much time. 
 
This thesis proposes three approaches with five algorithms to optimize& 
reduce BDDs construction time. The first approach is considered as an 
extension of the sifting approach, the second approach introduces two 
algorithms based on genetic algorithms as a new direction. The third uses 
the exact algorithms which gives the minimum BDD size for small circuits.   
 



 

The first approach is based on the idea of reducing the number of swap 
operations by restricting its application on certain variables. Determination 
of those variables follow from a communication complexity argument: a 
weak information flow between two levels of an OBDD indicates candidate  
variable for swapping. The information flow can be estimated by an easily 
computable OBDD characteristic that we call share value. 
This first approach improves the time performance of the original sifting 
strategy considerably without causing a loss in the final size. Similarly, as in 
the case of the original sifting, no additional knowledge about the 
represented function is used. The second algorithm in this approach 
combines the previous idea with linear transformation.  
The second approach that we present in the thesis uses those algorithms as a 
minimization tool in the field of genetic algorithms.  
Furthermore, the third approach introduces two algorithms for speeding up 
the exact algorithm by using new lower bounds known from VLSI design. 
 
For this thesis two software packages had been implemented, in C under 
RedHat Linux Operating system based on CUDD [Som 02]. In each 
package three new and different algorithms, in addition to the known 
algorithms, are implemented and tested. The packages features 6 new 
commands and they have been efficiently used to minimize and accelerate 
ISCAS’85 circuits and LGSynth93 circuits with up to 21 variables input. . 
 
 



 

Chapter 1             
Introduction to Boolean Function Manipulation 
 
 
 
1.1 Introduction 

 
Digital design is concerned with the design of digital electronic circuits. 
The subject is also known by other names such as logic design, digital 
logic, switching circuits and digital systems. Digital circuits are employed 
in the design of all systems in our live such as digital computers, control 
systems, data communications and many other applications that require 
electronic digital hardware.  
In order to create any integrated circuit we must proceed in four stages: 
design, fabrication, testing and packaging Figure 1.1 illustrates the four 
stages and their contents. The design phase can be divided into three 
sequential procedures starting with modeling, synthesis & optimization, 
and verification.  
Modeling is the corner stone of microelectronic design because it 
translates the designer idea and represents the vehicle used to convey 
information. It must be machine readable. Today it is implemented by 
using a hardware description language such as verilog or VHDL. 
Circuit synthesis is the second procedure in the design stage. it starting in 
the designer’s mind when sketching the first model. Its aim is to generate 
the details of the circuit and is performed by a stepwise refinement 
process during the detailed process of the original model in the first 
procedure. As the synthesis proceeds in representing the model more 
information is needed according to the technology and the desired design 
implementation such as the wires width in the geometric layout models. 
Circuit optimization is always combined with synthesis. It enhances the 
overall quality of the circuit. Here quality means the circuit performance 
which consists of time, overall area, and testability. The time 
performance is the time needed to process an amount of information, the 
overall area performance is an objective of circuit design because smaller 
circuits relate to more circuit per wafer which minimizes the 
manufacturing cost. The testability performance means how easy it is to 
the circuit after manufacturing.  
Verification consists of verifying the consistency of the models used 
during the design process as well as checking some properties of the 
original model. 
       
The performance of digital systems greatly depends on the efficiency 
with which the Boolean functions are manipulated.  



 

 
 
 
 
 
 
 
 
 
 
 
                  
 
 
 
 
 
                 Figure (1.1) four stages to crate a digital circuit 
 
    
A good data structure is the magic key to efficient Boolean function 
(switching function) manipulations. Some of the classical methods for 
representing and manipulating Boolean function are truth tables, parse 
tree, minterm & maxterm canonical form, cube sets and graph 
representation. 
 
 
1.2  Manipulation of Boolean functions methods 
 
1.2.1 Truth tables representation  
 
A Boolean function is an expression formed with binary variables, joined 
with binary operators, AND, OR and unary operator NOT, parentheses 
and an equal sign. For example figure (1.2) illustrates the truth table for 
the following functions: 
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combination of 1’s and 0’s of the binary variables. In general we need 2n 
combinations to represent a function containing n binary variables 
Truth tables are advantageous in that any Boolean function expressed as a 
truth table is in a canonical form (always has the same representation) so 
checking equivalence is simple, 
 
 
 
 
 
 
 
 
 
 
 
 
                            Figure (1.2) truth table (f1,f2,f3,f4) 
                                     
computing the complement of a function is simple, computing the AND 
& OR of two functions is simple, checking for tautology is simple. They 
are suitable for manipulation on computers especially on high speed 
vector processors or parallel machines but the great drawback of truth 
table representations is the tremendous storage requirement. 
 
 
1.2.2 Minterm & Maxterm  
 
Any two binary variables (x,y) combined with an AND operation take 
four possible combinations : yxyxyxxy  ,,, . Each of these AND terms 
represents one of the distinct areas in Venn diagram of figure (1.3) and is 
called minterm or a standard product. In a similar way n variables can be 
combined to form 2n minterm. The 2n different minterms can be 
combined by a method similar to the one shown in figure (1.4), for the 
case of three variables. The binary numbers from 0 to n-1 are listed under 
the n variables. Each minterm is obtained from an AND term of the n 
variable with each variable being primed if it has a binary value 0 or 
unprimed if 1. A symbol for each minterm is shown in the form mj where 
j is the decimal number corresponding to the binary number of the 
minterm designated. 
The maxterm are computed in a similar way except that the n variable 
form an OR terms. 

X       y       z  f1              f2             f3            f4 
0       0        0 
0       0        1 
0       1        0 
0       1        1 
1       0        0 
1       0        1 
1       1        0 
1       1        1 

0                 0              0              0 
0                 1              1               1 
0                 0              0               0 
0                 0              1               1 
0                 1              0               1 
0                 1              0               1 
1                 1              0               0 
0                 1              0                0 



 

From the previous discussion it is easy to demonstrate an important 
property of Boolean algebra: any Boolean function can be expressed as a 
sum of minterms or product of maxterms (They are also called POS 
forms, SOP forms, cube sets, PLA forms, covers or two level logics)   
Cube sets sometime give more compact representation than truth tables 
but redundant cube may appear in logic operation and they need to be 
reduced for checking the equivalence or tautology so 
 
 
  
 
 
 
 
 
 
 
 
                    Figure(1.3) Venn diagram of two variables.  
 
 
 

 
X Y  Z 

          Minterm                                    Maxterm    
    term      designation                term            desighnatio   

000 
001 
010 
011 
100 
101 
110 
111 
 

  x’y’z’        m0                           x+y+z            M0    
  x’y’z         m1                           x+y+z’           M1    
  x’yz’         m2                           x+y’+z           M2    
  x’yz          m3                           x+y’+z’          M3 
  xy’z’         m4                           x’+y+z           M4 
  xy’z           m5                          x’+y+z’          M5                   
  xyz’           m6                          x’+y’+z          M6 
  xyz            m7                          x’+y’+z’         M7 

 
           Figure (1.4)Minterm&Maxterm of three variables.  
 
the reduction process is time consuming. The other drawbacks are the 
exponential size of cube sets for parity functions and the difficulty in 
performing the complement operation.   
 
 
 
 

 
        X                                      y          
                yx         xy        x’y             
 
 
x’y’ 



 

1.2.3 Parse tree 
Parse trees sometimes give compact representation for Boolean 
expressions that have many input variables and cannot be representing 
compactly by using truth tables. The disadvantage of this method is 
that there are different ways to express a given function so it is very 
hard to check for equivalence. 
Figure (1.5) illustrates the parse tree for ))(( dcbaf    
 
 
 

 
                              Figure (1.5) parse tree for ))(( dcbaf            
                                    
1.2.4 Graph representation 
 
All the previous classical method are impractical because the increasing  
need to represent large scale functions , so we need a practical method to 
represent those functions. Binary Decision Diagrams (BDD’s) were 
initially introduced by Ackers [Ake 78 ]. A BDD  is a rooted DAG, 
G(V,E). The vertex set V is made up of two different types of vertices; 
terminal and non-terminal. Each BDD has one or two terminal vertice(s) 
with out-degree of zero and multiple non-terminal vertices, each with out-
degree of exactly two. A terminal vertex v, has attribute value(v) {0,1} . 
A non-terminal vertex v has attribute index(v) {1,2,..,n} and two 
children low(v), high(v) V. The attribute index(v) specifies a linear 
ordering of the variables in the support of the BDD; i.e. it satisfies the 
property such that for any non-terminal vertex v, index(v) < { 
index(low(v)), index(high(v)) }. 
 
Figure (1.6) shows the  BDD of cabf  )(  
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+ +
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                                 Figure (1.6) BDD of   cabf  )(   
 
Today the binary decision diagrams gain a widespread uses because of its 
ability for representing Boolean functions. We can easily check the 
equivalence of two functions because BDD’s give a canonical form for 
the Boolean function and also their size is in the order of kn where k is a 
constant and n is the number of input variables. This size leads to suitable 
computation time and memory consumption. 
 
   
1.3  Simplification of Boolean functions  
 
The complexity of the digital logic gates that implement a digital function 
is directly related to the complexity of the of the algebraic expression 
from which the function is implemented, although the truth table 
representation of a function is unique but it can appear in many different 
forms. Boolean functions can be simplified  by means of algebraic rules 
(described in figure (1.7))but this method have a drawback that it lacks 
specific rules to predict each succeeding step in the manipulation process. 
The K-map method provides a straight forward procedure for minimizing 
Boolean function. It is considered as a pictorial form of truth table or an 
extension of Venn diagram, 
but it is not suitable to minimize a Boolean function with large number of 
input variable number due to the size of the needed tables.  
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                   Figure (1.7) Postulates &theorem of Boolean algebra 
 
 
1.3.1 K-map 
 
The map method was first proposed by Veitch and modified by 
Karnaugh. It is known as Veitch diagram or Karnaugh map. The map  is a 
diagram made up of squares, were each square represents one minterm. 
Since any Boolean function can be expressed as a sum of minterm, it 
follows that Boolean function is recognized graphically in the map from 
the area enclosed by those squares whose minterm are included in the 
function. In fact the map represents all possible ways a function may be 
expressed in a standard form. By recognizing different patterns we can 
derive multiple algebraic expressions for the same function so we can 
choose the simplest one, assuming that the simple exepression is the sum 
of product or product of sum which has the minimum number of literals. 
Figure (1.8) shows the map which simplify the function f where 
                                
                                   )14,13,12,9,8,6,5,4,2,1,0(),.,( wzyxf   

   
Since the function has four variables we must use a four variable map. 
The minterm listed in the sum are marked with 1’s in the map. Eight 
adjacent squares marked with 1’s can be combined to form the one literal 
term y’. The remaining three 1’s on the right can not be combined to give 
simplified term. They must be combined as two or four adjacent squares. 
The larger the number of squares combined, the smaller the number of 
literals in the term. In this example the top two 1’s on the right are 
combined with the top two 1’s on the left to give the term w’z’. Note that 
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it is permissible to use the same square more than once, we are now left 
with a square marked by 1 in the third row and fourth column (square 
1110 ). Instead of taking this square alone (which will give a term of four 
literals), we combine it with squares already used to form an area for 
adjacent squares  this squares comprise the two middle rows and the two 
end columns giving the term xz’, the simplified function is 

zxzwyf    . 
 
In the map method we can also enter the functions expressed with product 
of sums ( )'')(''( zxwzyf  ) by taking the complement of the function 
and from it find the squares to be marked with 0’s which represent the 
minterm of f’ (the remaining squares are marked with 1’s if there is no 
don’t care conditions ). In spite of the simplicity of map simplification for 
truth tables, it has a great disadvantage As the number of input variable 
increase(n variable) the storage size increases (2n) and also the computing 
time increases (exponential).so we use Binary decision diagrams which 
give a feasible size for many practical functions. Sometimes in the worst 
case BDD give an exponential size for the number of input, unlike truth 
tables which  needs  2n bit of memory.      
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