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Abstract

Boolean algebra forms the backbone of computer science and digital
system design. Most of problems such as digital logic design, testing,
artificial intelligence are expressed by a sequence of operations on Boolean
function.

BDD’s as a data structure for representing of Boolean functions were first
popularized by [Ake 78] and [Mor 82]. Then they gained a widespread use

after the restricted form ROBDD was presented by [Bry 86] because of its
canonical representation form and manipulation efficiency. Due to the BDD
size sensitivity to the variable ordering, a big effort was made toward the
generalization of the OBDD structure to obtain more compact
representations, by optimizing the variable ordering. There are examples
that show exponential gabs in the sizes of functionally equivalent ROBDDs
which differ only in their variable orderings. Since the problem of finding
an optimal variable ordering is known to be NP-hard and there is a lack of
knowledge about the approximability of the problem, there is a strong need
for good working heuristics.

This thesis is focused on finding good variable ordering to optimize and
accelerate the construction of BDD in three different directions. Those
directions depend on the most popular heuristic, sifting, introduced by [Rud
93]. The basic idea behind the sifting algorithm is to look for the best
position for each variable by moving it through the whole ordering one
position at a time. The basic operation used to implement these movements
is the exchange of two adjacent variables (swapping operation) which takes
a time proportional to the number of nodes labeled by the swapped
variables. The total time for sifting grows very fast with the number of
variables, Lets consider only one variable move over a thousand of variables
and we can see clearly that it takes too much time.

This thesis proposes three approaches with five algorithms to optimize&
reduce BDDs construction time. The first approach is considered as an
extension of the sifting approach, the second approach introduces two
algorithms based on genetic algorithms as a new direction. The third uses
the exact algorithms which gives the minimum BDD size for small circuits.



The first approach is based on the idea of reducing the number of swap
operations by restricting its application on certain variables. Determination
of those variables follow from a communication complexity argument: a
weak information flow between two levels of an OBDD indicates candidate
variable for swapping. The information flow can be estimated by an easily
computable OBDD characteristic that we call share value.

This first approach improves the time performance of the original sifting
strategy considerably without causing a loss in the final size. Similarly, as in
the case of the original sifting, no additional knowledge about the
represented function is used. The second algorithm in this approach
combines the previous idea with linear transformation.

The second approach that we present in the thesis uses those algorithms as a
minimization tool in the field of genetic algorithms.

Furthermore, the third approach introduces two algorithms for speeding up
the exact algorithm by using new lower bounds known from VLSI design.

For this thesis two software packages had been implemented, in C under
RedHat Linux Operating system based on CUDD [Som 02]. In each
package three new and different algorithms, in addition to the known
algorithms, are implemented and tested. The packages features 6 new
commands and they have been efficiently used to minimize and accelerate
ISCAS’85 circuits and LGSynth93 circuits with up to 21 variables input. .



Chapter 1
Introduction to Boolean Function Manipulation

1.1 Introduction

Digital design is concerned with the design of digital electronic circuits.
The subject is also known by other names such as logic design, digital
logic, switching circuits and digital systems. Digital circuits are employed
in the design of all systems in our live such as digital computers, control
systems, data communications and many other applications that require
electronic digital hardware.

In order to create any integrated circuit we must proceed in four stages:
design, fabrication, testing and packaging Figure 1.1 illustrates the four
stages and their contents. The design phase can be divided into three
sequential procedures starting with modeling, synthesis & optimization,
and verification.

Modeling is the corner stone of microelectronic design because it
translates the designer idea and represents the vehicle used to convey
information. It must be machine readable. Today it is implemented by
using a hardware description language such as verilog or VHDL.

Circuit synthesis is the second procedure in the design stage. it starting in
the designer’s mind when sketching the first model. Its aim is to generate
the details of the circuit and is performed by a stepwise refinement
process during the detailed process of the original model in the first
procedure. As the synthesis proceeds in representing the model more
information is needed according to the technology and the desired design
implementation such as the wires width in the geometric layout models.
Circuit optimization is always combined with synthesis. It enhances the
overall quality of the circuit. Here quality means the circuit performance
which consists of time, overall area, and testability. The time
performance is the time needed to process an amount of information, the
overall area performance is an objective of circuit design because smaller
circuits relate to more circuit per wafer which minimizes the
manufacturing cost. The testability performance means how easy it is to
the circuit after manufacturing.

Verification consists of verifying the consistency of the models used
during the design process as well as checking some properties of the
original model.

The performance of digital systems greatly depends on the efficiency
with which the Boolean functions are manipulated.
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Figure (1.1) four stages to crate a digital circuit

A good data structure is the magic key to efficient Boolean function
(switching function) manipulations. Some of the classical methods for
representing and manipulating Boolean function are truth tables, parse
tree, minterm & maxterm canonical form, cube sets and graph
representation.

1.2 Manipulation of Boolean functions methods
1.2.1 Truth tables representation

A Boolean function is an expression formed with binary variables, joined
with binary operators, AND, OR and unary operator NOT, parentheses
and an equal sign. For example figure (1.2) illustrates the truth table for
the following functions:

f, = xyz'

f,=x+yz

f,=x"yz+x'yz

f, =xy' +x'z

Which have three binary variables (x,y,z ) we need a list of 2°



combination of 1’s and 0’s of the binary variables. In general we need 2"
combinations to represent a function containing n binary variables

Truth tables are advantageous in that any Boolean function expressed as a
truth table is in a canonical form (always has the same representation) so
checking equivalence is simple,

X y Z f]_ f2 f3 f4

0 0 0 |0 0 0 0
0 0 1 1|0 1 1 1
0 1 0 |0 0 0 0
0 1 1 |0 0 1 1
1 0 0 |0 1 0 1
1 0 1 |0 1 0 1
1 1 0 |1 1 0 0
1 1 1 |0 1 0 0

Figure (1.2) truth table (fy,f,,f3,f4)

computing the complement of a function is simple, computing the AND
& OR of two functions is simple, checking for tautology is simple. They
are suitable for manipulation on computers especially on high speed
vector processors or parallel machines but the great drawback of truth
table representations is the tremendous storage requirement.

1.2.2 Minterm & Maxterm

Any two binary variables (x,y) combined with an AND operation take
four possible combinations :xy,xy,xy’,x’y’. Each of these AND terms
represents one of the distinct areas in Venn diagram of figure (1.3) and is
called minterm or a standard product. In a similar way n variables can be
combined to form 2" minterm. The 2" different minterms can be
combined by a method similar to the one shown in figure (1.4), for the
case of three variables. The binary numbers from 0 to n-1 are listed under
the n variables. Each minterm is obtained from an AND term of the n
variable with each variable being primed if it has a binary value 0 or
unprimed if 1. A symbol for each minterm is shown in the form m; where
J is the decimal number corresponding to the binary number of the
minterm designated.

The maxterm are computed in a similar way except that the n variable
form an OR terms.



From the previous discussion it is easy to demonstrate an important
property of Boolean algebra: any Boolean function can be expressed as a
sum of minterms or product of maxterms (They are also called POS
forms, SOP forms, cube sets, PLA forms, covers or two level logics)
Cube sets sometime give more compact representation than truth tables
but redundant cube may appear in logic operation and they need to be
reduced for checking the equivalence or tautology so

xy

X'y’

Figure(1.3) Venn diagram of two variables.

Minterm Maxterm
XY Z term  designation term desighnatio
000 Xy’z’ Mo X+y+z Mo
001 X’y’z m; X+y+27’ M,
010 Xyz’ m, X+y’+z M,
011 X’yz ms X+y’+7’ M,
100 Xy’z’ My X’ +y+z M4
101 Xy’z Ms X' +y+Z7’ Ms
110 Xyz’ Mg X' +y’+z Me
111 Xyz my X' +y’+7’ M-

Figure (1.4)Minterm&Maxterm of three variables.

the reduction process is time consuming. The other drawbacks are the
exponential size of cube sets for parity functions and the difficulty in
performing the complement operation.



1.2.3 Parse tree

Parse trees sometimes give compact representation for Boolean
expressions that have many input variables and cannot be representing
compactly by using truth tables. The disadvantage of this method is
that there are different ways to express a given function so it is very
hard to check for equivalence.

Figure (1.5) illustrates the parse tree for f =(a+b)(c+d)

Figure (1.5) parse tree for f =(a+b)(c+d)

1.2.4 Graph representation

All the previous classical method are impractical because the increasing
need to represent large scale functions , so we need a practical method to
represent those functions. Binary Decision Diagrams (BDD’s) were
initially introduced by Ackers [Ake 78 ]. A BDD is a rooted DAG,
G(V,E). The vertex set V is made up of two different types of vertices;
terminal and non-terminal. Each BDD has one or two terminal vertice(s)
with out-degree of zero and multiple non-terminal vertices, each with out-
degree of exactly two. A terminal vertex v, has attribute value(v) € {0,1} .
A non-terminal vertex v has attribute index(v) < {1,2,...n} and two
children low(v), high(v) € V. The attribute index(v) specifies a linear
ordering of the variables in the support of the BDD; i.e. it satisfies the
property such that for any non-terminal vertex v, index(v) < {
index(low(v)), index(high(v)) }.

Figure (1.6) shows the BDD of f =(ab)+c



Figure (1.6) BDD of f =(ab)+c

Today the binary decision diagrams gain a widespread uses because of its
ability for representing Boolean functions. We can easily check the
equivalence of two functions because BDD’s give a canonical form for
the Boolean function and also their size is in the order of kn where k is a
constant and n is the number of input variables. This size leads to suitable
computation time and memory consumption.

1.3 Simplification of Boolean functions

The complexity of the digital logic gates that implement a digital function
is directly related to the complexity of the of the algebraic expression
from which the function is implemented, although the truth table
representation of a function is unique but it can appear in many different
forms. Boolean functions can be simplified by means of algebraic rules
(described in figure (1.7))but this method have a drawback that it lacks
specific rules to predict each succeeding step in the manipulation process.
The K-map method provides a straight forward procedure for minimizing
Boolean function. It is considered as a pictorial form of truth table or an
extension of Venn diagram,

but it is not suitable to minimize a Boolean function with large number of
input variable number due to the size of the needed tables.



Postulate 2 (@)x+0=x (b)x.1=x

Postulate 5 (@)x+x'=1 (b)x.x" =0

Theorem 1 (a)X + x = X (b)Xx.x = x

Theorem 2 (a)x+1=1 (b)x.0=0

Theorem 3,involution (x)'=1

Postulate 3,commutative (@)x+y=y+x (b)xy = yx

Theorem 4,assiative @)X+ (y+2) = (x+y)+2 (B)x(yz) =(xy)z
Postulate 4,distributive (@)X(y + 2) = Xy + Xz (0)(x + yz) = (X + y)(x + 2)
Theorem 5,demorgen (@)(x+y) =x+y’' (b)(xy)" = x"+y’
Theorem 6,absorption (a)X + Xy = X (b)x(x+y) = x

Figure (1.7) Postulates &theorem of Boolean algebra

1.3.1 K-map

The map method was first proposed by Veitch and modified by
Karnaugh. It is known as Veitch diagram or Karnaugh map. The map is a
diagram made up of squares, were each square represents one minterm.
Since any Boolean function can be expressed as a sum of minterm, it
follows that Boolean function is recognized graphically in the map from
the area enclosed by those squares whose minterm are included in the
function. In fact the map represents all possible ways a function may be
expressed in a standard form. By recognizing different patterns we can
derive multiple algebraic expressions for the same function so we can
choose the simplest one, assuming that the simple exepression is the sum
of product or product of sum which has the minimum number of literals.
Figure (1.8) shows the map which simplify the function f where

f(x,yz,w) = (012,45,689,121314)

Since the function has four variables we must use a four variable map.
The minterm listed in the sum are marked with 1’s in the map. Eight
adjacent squares marked with 1’s can be combined to form the one literal
term y’. The remaining three 1’s on the right can not be combined to give
simplified term. They must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller the number of
literals in the term. In this example the top two 1’s on the right are
combined with the top two 1’s on the left to give the term w’z’. Note that




it is permissible to use the same square more than once, we are now left
with a square marked by 1 in the third row and fourth column (square
1110 ). Instead of taking this square alone (which will give a term of four
literals), we combine it with squares already used to form an area for
adjacent squares this squares comprise the two middle rows and the two
end columns giving the term xz’, the simplified function is
f=y'+wWz'+xz' .

In the map method we can also enter the functions expressed with product
of sums (f =(y+z')(w+x+z")) by taking the complement of the function

and from it find the squares to be marked with 0’s which represent the
minterm of f* (the remaining squares are marked with 1’s if there is no
don’t care conditions ). In spite of the simplicity of map simplification for
truth tables, it has a great disadvantage As the number of input variable
increase(n variable) the storage size increases (2") and also the computing
time increases (exponential).so we use Binary decision diagrams which
give a feasible size for many practical functions. Sometimes in the worst
case BDD give an exponential size for the number of input, unlike truth
tables which needs 2" bit of memory.

yz f—}%
00 01 11 10

wx 00 ||1 1 1
01 Th 1 1
X
TR 1
W
1 1
10

H_/

z

Figure (1.8) K-map for simplifying
f(x,y.z,w)=>"(01,24,5,689121314)



