

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Design, Analysis and High Precision Measurements of Radio Link for the Smart Energy Meters

A Thesis submitted in partial fulfilment of the requirements of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Ashraf Gaber Hasssan Abd Ellah Ahmed

Bachelor of Science in Electrical Engineering (Communication and Electronics Department) Faculty of Engineering, Ain Shams University

Supervised by

Prof. Dr. Eng. Hadia Mohamed Said Elhennawy

(Ain Shams University)

Prof. Dr. Eng. Sohair Fakhry Mahmoud

(National Institute of Standards (NIS))

Cairo – (2016)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications Design, Analysis and High Precision Measurements of Radio Link for the Smart Energy Meters

by

Eng. Ashraf Gaber Hasssan Abd Ellah

Bachelor of Science in Electrical Engineering

Electronics Engineering and Electrical Communications

Faculty of Engineering, Ain Shams University

Examiners Committee

Name and Affiliation	Signature
Prof. Esmat Abd Elfatah Abd Allah	
(Electronics Research Institute)	
Prof. Abd Elhalim Abd Elnaby Zekri	•••••
(Ain Shams University)	
Prof. Hadia Mohamed Said Elhennawy	•••••
(Ain Shams University)	
Prof. Sohair Fakhry Mahmoud	•••••
(National Institute of Standards (NIS))	

Date: 31 December 2016

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain Shams University. The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ashraf Gaber Hassan
Signature
Date: December 2016

Researcher Data

Name of Researcher : Ashraf Gaber Hassan

Date of Birth : 5 -1-1979

Place of Birth : Cairo – Egypt

Last academic degree : B.Sc. in Electrical Engineering

Field of Specialization : Electronic and Communication

Engineering

University issued the degree : Ain Shams University

Date of issued the degree : 2001

Current Job : Quality Manager of High Voltage

Lab (National Institute of Standards)

Thesis Summary

The thesis comprises of six chapters. Chapter 1, is an introduction presenting the importance of the undertaken subject, description of the problem and highlighting the contents of the thesis.

Chapter 2 shows smart meters systems the target of executing them and it gives brief analysis of smart meter design. And it gives a background of traditional energy meters (electromechanical and electronic meters). And introduce short introduction to smart grid. This chapter includes a brief discussion of communication technologies for smart meters systems.

Chapter 3 introduces the effects of electromagnetic interference/compatibility (EMI/EMC) that is apparent everywhere due to the broad utilization of electronic and electrical systems in items for example, TVs, PCs, and automobile. Also, discuss the human exposure levels and relation to EM compatible. This chapter includes a brief discussion of estimation techniques utilizing open sites, transverse electromagnetic (TEM) cells, resonating chambers, and anechoic chambers are talked about here, in light of their specialized defences and bases, their qualities and impediments.

Chapter 4 describes the radiated immunity and emission measurements procedures. And investigate the different methods used to maintain uniform field area inside transverse electromagnetic (GTEM).

Chapter 5 introduces an investigation of the performance of smart meter under radiated electromagnetic disturbances. Their performance characteristics regarding the ones measured without electromagnetic field will be thought about.

Chapter 6 is a conclusion and future work of this research. This research work is mainly concerned with electromagnetic compatibility EMC evaluation of smart meters and analyses the working environment of these meters. It also throws light on the probable EMI sources, suppression and immunity improvement techniques for compliance of these smart meters to the national and international norms. The motivation behind this work is to raise open attention to security worries because of establishment of smart meter system. The analysis of this system suggests that the designer should review its designation rules or basics on the smart meter system design.

Key words: Smart meter, Electromagnetic interference, Electromagnetic compatibility, Radiated immunity and emission tests, Field uniformity, GTEM.

ABSTRACT

Due to increasing of electronics and digital circuits in all sides of daily life, the electromagnetic pollution is increasing daily. The performance of electronic and electrical equipment is much influenced by this electromagnetic pollution. Now day most of energy meters are still electromechanical. But due to the advantages of smart meters, the conventional meters are being replaced by them. As part of a smart grid, smart meters will be everywhere, and not always in the most ideal operating conditions (inside transformer rooms or near to mobile phone base stations). So, these EM noises might affect the performance of smart meters.

Whether you believe in manmade climate change or not, one fact is certain; we are depleting our energy supplies faster than we can replace them. The majority of fossils fuel supplies are likely to run out this century and until we achieve an equivalent energy production from renewable sources, we need to monitor and control our daily energy consumption. One way we can do this is by using Smart Electronic Meters; conventional energy meters with movable disc were used to register the energy earlier. But due to certain advantages of electronic meters, these meters are being replaced by smart meters.

Smart meters are very much vulnerable to EM noises & this might affect the performance & reliability of meters. EMI/EMC evaluation has thus become necessary to ensure that these meters work satisfactorily in the present day environment.

This research work is mainly concerned with electromagnetic compatibility (EMC) and analyzes the possible impact of the use of smart metering systems, using high precision measurement techniques. This work introduces electromagnetic compatibility (EMC) as an integral process needed for the design of smart energy meters that are used in the operation of the Smart Grid, and it deals with the immunity of smart energy meters to a variety of EM sources that can affect communications and operation. The other aspect of EMC that must be taken into account is controlling emissions from these devices and equipment that might adversely affect nearby electronics by radiated emission.

When the communication modules are installed in the smart meter device these modules should be included in the EMC testing and evaluation. However, at present, the kilowatt-hour meter standard does not consider testing of meters incorporating with such communication modules.

The purpose of this work is to raise public awareness of safety concerns due to installation of Smart Meter System.

This study may be the stepping-stone into bringing EMC measurements-test method to Egypt.

Acknowledgment

I wish to express my deep gratitude and respect to my supervisors committee: Prof. Dr. Hadia Mohamed Said Elhinnawi and Prof. Dr. Sohair Fakhry Mahmoud for their continuous guidance and support. Their helpful and valuable discussions were the core reason for accomplishing this work.

I would like to sincerely thank Prof. Dr. Ibrahim El- shaer, the general manager of Polytechnique Metrology Centre (PMC) who was a great support during the period of experimental work. Also, I would like to thank Eng. Alaa Hussien (Technical Manager of PMC lab), and technician team of PMC lab for generously helping me in experimental part of this thesis.

Finally, my thanks and gratitude is dedicated to every member of my family for their patience and understanding all along the way.

December 2016

Table of Contents

VI VIII IX XII XV XVIII

Abstract		
Acknow	ledgment	
	Contents	
	igures	
	ables	
	bbreviations	
List of S	ymbols	•••••
_	TER 1: INTRODUCTION	
	neral	1
	verview of Smart Meters	1
	search Objectives	2
1.4. Ov	erview of the Thesis	3
CHAP	TER 2: SMART METER SYSTEMS	
2.1.	General	5
2.2.	Electricity meters	5
2.2.1.	Electromechanical meters	5
2.2.2.	Electronic meters.	6
2.2.3.	Pre-pay meters	7
2.3.	Smart metering	7
2.3.1.	Overview	7
2.3.2.	From AMR to smart metering	8
2.3.2.1.	Automated meter reading	8
2.3.2.2.	Automatic meter management	8
2.3.2.3.	Smart metering.	9
2.3.3.	What are smart metering?	9
2.3.4.		10
2.3.4.1.		10
2.3.4.2.	Microcontroller	11
2.3.4.3.		12
2.3.4.4.	Smart meter functional analysis	13
2.4.	Smart grids	13
2.4.1.	Overview	13
2.4.2.	What is smart grid?	14
2.5.		15
2.5.1.	Overview	15
2.5.2.	Wired communication.	16
2.5.3.		17
2.6.	Security and data protection for smart metering system	19

	ER 3: BASICS OF	
ELECTR	ROMAGNETIC COMPATIBILITY (EMC)	
3.1.		20
3.2.		20
3.3.	Sources of electromagnetic interference	22
3.3.1.	Natural Noise	23
3.3.2.	Man-made noise.	24
3.4.	Electromagnetic interference coupling	26
3.5.		30
3.5.1.	Electromagnetic emission	32
3.5.2.	Electromagnetic immunity	33
3.6.	Effects of EMI to human	34
3.7.	EMC standards and specifications	36
3.8.	Radiated emission limits for digital devices	38
3.9.	Immunity test level	4(
3.10.	EMC test facilities	41
3.10.1.	Open area test site (OATS)	42
3.10.1.1.	OATS characteristics	42
3.10.1.2.	Validating the OATS	46
3.10.1.3.	Advantages and disadvantages of OATS	47
3.10.2.	EMC measurements in screened chamber	47
3.10.2.1.	Anechoic chambers	48
3.10.2.1.1.	Anechoic chamber characteristics	48
3.10.2.1.2.	RF absorbing material	49
3.10.2.1.3.	Size of anechoic chamber	51
3.10.2.1.4.	Validating anechoic chamber	52
3.10.2.1.5.	Advantages and disadvantages of Anechoic chamber	54
3.10.2.2.		54
3.10.2.2.1.	Reverberation chamber characteristics	55
3.10.2.2.2.	Advantages and disadvantages of reverberation chamber	56
3.10.3.		56
3.10.3.1.	History and development of the GTEM cell	57
3.10.3.2.	GTEM characteristics	58
3.10.3.3.		60
3.10.3.4.	Advantages of GTEM to other test facilities	60
3.10.3.4.1.		61
3.10.3.4.2.		61
СНАРТЕ	ER 4: RADIATED IMMUNITY AND EMISSION	
MEASUI	REMENTS	
4.1.		63
4.2.		63
4.2.1.	1 1 1	63
4.2.2.		64
4.2.3.	_	65
4.3.		67
4.3.1.		69
4.3.1.1.		71

4.3.2.	Radiated immunity test setup	76
4.3.2.1.	General immunity test conditions	76
4.3.2.2.	Test with current	78
4.3.2.2.1.	Radiated Immunity effect on limits of error	78
4.3.2.3.	Test without current	80
4.3.3.	Immunity performance criteria	80
4.4	Radiated emission test	81
4.4.1.	Radiated emission test setup	82
4.4.1.1.	Radiated emission test conditions	83
4.4.1.2.	Measurement procedure	84
4.4.2.	GTEM to OATS correlation	85
4.4.2.1.	Correlation algorithm	85
4.4.2.1.1.	Determining the field factor	86
4.4.2.1.1.1.	Experimental procedure	86
4.4.2.1.1.2.	Analytical procedure	87
4.4.2.1.2.	Correlation to OATS	88
	R 5: RESULTS AND DISCUSSION	
5.1.	Radiated immunity test results	90
5.1.1.	Field calibration inside the GTEM cell	90
5.1.1.1.	Field calibration at 10V/m	90
5.1.2.	Evaluation of the communication performance of smart meter	92
	system	
5.1.2.1.	Interference effect analysis	93
5.1.3.	Evaluation of the accuracy of smart energy meter	102
5.1.3.1.	Effect of RF disturbances as influence quantities	102
5.1.3.1.1.	Features of three phase meters used as samples	104
5.1.3.1.2.	Results and analysis	105
5.2.	Radiated emission test results	112
5.2.1.	Radiated emission analysis	125
~		
	R 6: CONCLUSION AND FUTURE WORK	
6.1.	General	133
6.2.	Radiated immunity and smart meter system	133
6.3.	Radiated emission and smart meter system	135
6.4.	Interference control technique	137
6.4.1.	Filtering EMI within smart meter system	138
6.4.2.	Shielding a smart meter system	139
6.5.	Conclusion	140
6.6.	Future work	141
Bibliography		142

List of Figures

Fig. 2.1	Electro induction meter	6
Fig. 2.2	Electronic meter	6
Fig. 2.3	Pre-pay meter	7
Fig. 2.4	Smart meter	7
Fig. 2.5	AMR network overview	8
Fig. 2.6	Smart meter blocks diagram	11
Fig. 2.7	Traditional power grids	14
Fig. 2.8	Smart grids	15
Fig. 2.9	Decision tree for communication medium	16
Fig. 2.10	Low voltage PLC communication system	17
Fig. 2.11	3G/4G smart meter infrastructure	19
Fig. 3.1	Illustration of simple EMI problem	22
Fig. 3.2	The EMI triangle	23
Fig. 3.3	Three components of EMC problem	26
Fig. 3.4	Various couplings paths of a victim system	27
Fig. 3.5	Radiated to conduct EMI	29
Fig. 3.6	Radiation from cable carrying EMI currents	29
Fig. 3.7	Some EMC terms and their interrelationships	30
Fig. 3.8	Intended and unintended coupling paths	33
Fig. 3.9	Number of mobile subscriber in Egypt	35
Fig. 3.10	EMC standard structure	37
Fig. 3.11	The CISPR OATS	43
Fig. 3.12	60 m X 30 m sheet steel ground plane on OATS	43
Fig. 3.13	Example of a 10 meter (OATS)	44
Fig. 3.14	Coupling of antenna in the presence of ground (a) Images for vertically (b) and horizontally (c) polarized antenna	45
Fig. 3.15	Tests used to measure site attenuation	46
Fig. 3.16	Inner Wall structure of anechoic chambers	49
Fig. 3.17	Structure of anechoic chamber	49
Fig. 3.18	Anechoic chambers by frequency ranges	50
Fig. 3.19	Propagation geometry for horizontal and vertical	53
Fig. 3.20	Site attenuation measuring method	54
Fig. 3.21	Reverberation Chamber	55
Fig. 3.22	Schematic of a TEM Cell	57
Fig. 3.23	Schematic of a GTEM Cell	58
Fig. 3.24	GTEM Chamber	59
Fig. 4.1	Smart multi-tariff meter EM341-3-3	64

Fig. 4.2	Smart meter EM341-3-3 block diagram	66
Fig. 4.3	External appearance of the GTEM 1000	68
Fig. 4.4	A GTEM 1000 Test Setup for radiated immunity tests	68
Fig. 4.5	Isotropic field sensor	70
Fig. 4.6	EM field distribution in the GTEM cell	71
Fig. 4.7	Grid calibration points within the GTEM	72
Fig. 4.8	Setup for field uniformity test	73
Fig. 4.9	Calibration field sensor inside GTEM cell	74
Fig. 4.10	The used grid points	74
Fig. 4.11	Power required for a given field strength for IEC 61000-4-20	75
Fig. 4.12	Smart meter fixed on manipulator inside GTEM	77
Fig. 4.13	Test set-up to perform immunity test according to IEC	77
Fig. 4.14	SIM card inside the GPRS module	77
Fig. 4.15	AT- 400 GSM Cell Phone Repeater	78
Fig. 4.16	Setup for testing three-phase watt-hour meters	79
Fig. 4.17	Schematic of radiated emission measurement setup	82
Fig. 4.18	Emission measurement setup	83
Fig. 4.19	EUT in the (a) first orientation (b) second orientation and (c) third orientation	84
Fig. 4.20	Cross-section of one port TEM cell	87
Fig. 4.21	Open-area test site geometry	88
Fig. 5.1	Software program that installed on PC of control center	94
Fig. 5.2	Power received at o/p of DUT inside GTEM at (3V- 30 V/m)	93
Fig. 5.3	Effect of radiated RF electromagnetic fields at 30 V/m	106
Fig. 5.4	Effect of radiated RF electromagnetic fields at 10 V/m	108
Fig. 5.5	Effect of radiated RF electromagnetic fields at 3 V/m	109
Fig. 5.6	Direct coupling and RF voltage induced into a circuit	110
Fig. 5.7	FCC Class A and Class B Radiated Emission Limits	115
Fig. 5.8	FCC Class B Radiated Emission Limits (R=3m)	115
Fig. 5.9	Emission of GTEM Floor	117
Fig. 5.10	Emission of GTEM with Repeater only	117
Fig. 5.11	Emission of Smart Meter SM1 (With Comm. Module)	118
Fig. 5.12	Emission of Smart Meter SM1 (Without Comm. Module)	118
Fig. 5.13	Emission of Smart Meter SM2 (With Comm. Module)	119
Fig. 5.14	Emission of Smart Meter SM2 (Without Comm. Module)	119
Fig. 5.15	Emission of Smart Meter SM3 (With Comm. Module)	120
Fig. 5.16	Emission of Smart Meter SM3 (Without Comm. Module)	120
Fig. 5.17	Emission of Smart Meter SM4 (With Comm. Module)	121
Fig. 5.18	Emission of Smart Meter SM4 (Without Comm. Module)	121
Fig. 5.19	Emission of Smart Meter SM5 (With Comm. Module)	122
Fig. 5.20	Emission of Smart Meter SM5 (Without Comm. Module)	122
Fig. 5.21	Emission of Smart Meter SM6 (With Comm. Module)	123
Fig. 5.22	Emission of Smart Meter SM6 (Without Comm. Module)	123
Fig. 5.23	Emission of Smart Meter SM8 (With Comm. Module)	124

Fig. 5.24	Emission of Smart Meter SM8 (Without Comm. Module)	124
Fig. 5.25	Health Code 6 Safe Radio Field Intensity Limits	126
Fig. 5.26	PCB radiated Emissions	127
Fig. 5.27	Calculation of the far fields of the wire currents	128

List of Tables

Table 2.1	Smart grid to conventional grid comparison	15
Table 3.1	Types of natural sources of electromagnetic interference	24
Table 3.2	Estimated electric field strength and effective radiated power from authorized services	25
Table 3.3	Intensity of electric field levels in an American home	25
Table 3.4	Intensity levels of electric field (30 cm away) home electrical devices or systems	26
Table 3.5	Plan of IEC 61000	38
Table 3.6	Limits of radiated emissions for digital devices of class A	39
Table 3.7	Limits of radiated emissions for digital devices of class B	39
Table 3.8	Immunity test levels	40
Table 3.9	Immunity test criterion	40
Table 3.10	Comparison of RAM types	51
Table 4.1	Electrical characteristics of EUT	67
Table 4.2	Main equipment used for radiated immunity	70
Table 4.3	The required calibration points in the uniform field area	72
Table 4.4	Typical conditions	79
Table 4.5	Influence quantity	79
Table 4.6	Immunity performance criteria	81
Table 4.7	Radiated disturbance limits of class B from 30 MHz up to 1 GHz	85
Table 4.8	Radiated disturbance limits of class B from 1 MHz up to 6 GHz	85
Table 5.1	Values of measured forward power as described by the method of constant field strength calibration ($Ec = 10$	91
Table 5.2	Forward power values sorted according to rising value (Ec = 10 V/m)	91
Table 5.3	Evaluation of the communication performance of a smart meter system under radiated electromagnetic disturbances	93
Table 5.4	Power Received at O/P of DUT inside GTEM at 30V/m	96
Table 5.5	Power Received at O/P of DUT inside GTEM at 20V/m	96
Table 5.6	Power Received at O/P of DUT inside GTEM at 10V/m	97
Table 5.7	Power Received at O/P of DUT inside GTEM at 9V/m	97
Table 5.8	Power Received at O/P of DUT inside GTEM at 8V/m	98
Table 5.9	Power Received at O/P of DUT inside GTEM at 7V/m	98
Table 5.10	Power Received at O/P of DUT inside GTEM at 6V/m	99
Table 5.11	Power Received at O/P of DUT inside GTEM at 5V/m	99
Table 5.12	Power Received at O/P of DUT inside GTEM at 4V/m	100
Table 5.13	Power Received at O/P of DUT inside GTEM at 3V/m	100
Table 5.14	Typical conditions	103