

The significance of (SERPINI1, and QP-C) in the diagnosis of hepatocellula carcinoma in chronic HCV Egyptian patients.

Thesis

Submitted for Fulfillment of Master Degree in Tropical Medicine By

Khalid Mohammed Ragab (M.B. B.Ch.)

Supervisors

Dr.Hassan Ahmed El Garem

Professor of Tropical medicine Faculty of Medicine Cairo University

Dr.Mohey Eldien Atia

Assistant professor of Tropical medicine Theodor Bilharz Research Institute

Dr.Hanan Abd El Hafez

Lecturer of Tropical medicine Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2010

ACKNOWLEDGMENT

"First and Foremost, Thanks are Due to GOD, The Beneficent and Merciful of All"

It was an honor to work under the supervision of eminent professors, who gave me their whole hearted support and immense facilities as is their usual with their juniors. I owe them more than words can say.

I would like to express my deepest gratitude and sincere thanks to *Dr*. *Hassan Ahmad El Garem*, professor of Tropical Medicine, Faculty of Medicine, Cairo University, for instructive supervision, continuous guidance, valuable instructions, for offering all facilities for the completion of this work and for giving me the opportunity to share in this project which is **supported by grant from Cairo University**.

My thanks and appreciation to *Dr. MohyEldienAtia*, Assistant professor of Tropical Medicine, Theodor Bilharz ResearchInstitute, for his strict supervision and advice.

Many thanks to *Dr.Hanan Abdel ElhafezHamed*, Lecturer of TropicalMedicine, Faculty of Medicine, Cairo University, for her continuous help,valuable suggestions, guidance and encouragement during the progressof this work. I would like to thank her for the meticulous and patientrevision of the work.

Whatever I say or write, I will never be able to express my deepfeelings and profound gratitude to **Prof. Dr. HishamRafaat Elkhayat,** Professor of tropical medicine, Theodor Bilharz Research Institute for

i

giving me the time to finish my work and his continuous support and advice.

Many thanks to **Dr.Mona Salah EldienHamdy**Professor of Clinical pathology, faculty of medicine Cairouniversity, foroffering all facilities for the laboratory work, standardization and interpretation of the results.

Iam extremely grateful *to Dr.Wafaa Ahmad Elakel*,consultant of hepatology faculty of medicine Cairo university For her unlimited help in the statistical analysis of the data; she gave me much of her time advice and effort throughout this work.

Many thanks to both *Dr. Tamer Elbaz* lecture of tropical medicine, faculty of medicine Cairo university and *Dr.EkramHamed* professor of interventional radiology National Cancer Institute Cairo university, all my friends, my colleague and patients for their effort and continuous help in collecting liver biopsies.

Finally, no words can express my deepest appreciation and gratitude to my family for their never ending support and care.

2011

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and it is one of the major causes of death. HCC is now a rather common malignancy in Egypt which usually develops on top of liver cirrhosis secondary to viral infection.

AIM: To determine the expression profile of two candidate biomarkers (SERPINI1, and QP-C) in the liver biopsy in patients with primary HCC and to compare their expression in patients with HCV whether they are cirrhotic or not and in normal subjects

METHODS: This study was conducted on 21 patients with **HCC** using triphasic computerized tomography (CT) scan and another another and another anothe

We determined the level of(SERPINI1 and QP-C) for all cases together with full clinical assessment, liver biochemical profile, viral markers, conventional ultrasound (US), abdominal triphasic CT scan and guided liver biopsy for HCC cases with atypical CT pattern.

RESULTS: we found that SERPINI1 and QP-C is highly expressed in HCC group than cirrhotic group with sensitivity and specificity within 80% and 70% respectively for SERPINI1 and sensitivity and specificity within 65% and 79% respectively for QP-C

CONCLUSION:Tissue marker SERPINI1 and QP-C is highly expressed in HCC and so their use as independent tumor marker in the diagnosis of HCC is to beconsidered

Keywords:

• Hepatocellular carcinoma (HCC) – (SERPINI1)-(QP-C)-(HCV)

CONTENTS

	Page
Acknowledgment	I
Abstract	III
List of tables.	V
List of figures.	VI
List of abbreviations.	VII
Introduction	1
Aim of work.	3
Epidemiology of hepatocellular carcinoma.	4
Pathogenesis of HCC	13
Diagnosis of hepatocellular carcinoma.	24
Serum markers for HCC.	45
Treatment of hepatocellular carcinoma.	57
Subjects and Methods.	70
Results	87
Discussion	102
Summary	111
Conclusion	113
Recommendations	114
References	115
Arabic summary	

LIST OF TABLES

Table	Review tables	Page
Table (1):	Paraneoplastic syndromes associated with HCC	27
Table (2):	Steiner-Edmondson grading system ofbiopsies	38
Table (3):	The Okuda staging system	39
Table (4):	Cancer Liver Italian Program (CLIP) scoring system	40
Table (5):	AJCC STAGING SYSTEM FOR PRIMARY LIVER CANCER	41
Table (6):	Kit Components	79
Table (7):	The volume of components needed to prepare the required number of reactions	70
Table (8):	The thermal cycler conditions	70
Table (9):	Storing cDNA Reverse Transcription Reactions	81
Table (10):	rRNA reaction, the required components added to reaction mix tube	83
Table (11):	Master mix for remaining assays	84
Table (12):	Thermal Cycling Parameters for PCR	85
	Results tables	
Table (1):	Distribution of the groups of the study	88
Table (2):	Age of the studied patients	88
Table(3):	Sex distribution of the studied patients	89
Table (4):	The laboratory data of the studied groups	90
Table (5):	AFP groups in relation to diagnosis	93
Table (6):	Biopsy finding in HCV and cirrhosis groups	94
Table (7):	Findings of the studied HCC patient	95
Table (8):	The median value of SERPINI1 and QP-C markers in the three groups	98
Table (9):	Patients are classified into groups according the SERPINI1 cutoff 9.1	99
Table (10):	Patients are classified into groups according the QP-C cutoff 6.9.	100
Table (11):	Area Under the ROC Curve	101
Table (12):	Correlation between AFP, diameter of HFL and markers	101
Table (13):	When adding SERPINI1 + QP-C to differentiate HCC-LC	101

LIST OF FIGURES

Figure	Review	Page		
Fig.(1):	Chronologic sequence of cellular lesions culminating in the development of hepatocellular carcinoma in	13		
Fig. (2):	humanUltrasound for hepatic focal lesion(HFL)	74		
Fig. (3):	Ultrasound for hepatic focal lesion(HFL)	74		
Fig. (4):	Expression of QP-C	82		
Fig. (5):	Expression of SERPINI1	82		
RESULTS				
Fig. (1):	Mean value and stander deviation of age of the three			
	groups	89		
Fig. (2):	The laboratory data of all patients	91		
Fig. (3):	The laboratory data of cirrhosis patients	91		
Fig.(4):	The laboratory data of HCC patients	92		
Fig.(5):	Comparison of the mean values of the three groups	92		
Fig.(6):	AFP groups in relation to diagnosis	94		
Fig(7):	adenocarcinoma grade II OF the liver	96		
Fig(8):	atypical enhancement of HCC in CT	96		
Fig.(9):	Percentage of child scoring	97		
Fig.(10):	percentage of size of focal lesions by CT	97		
Fig.(11):	The median value of SERPINI1 marker in the three groups.	98		
Fig.(12):	The median value of QP-C marker in the three groups	99		
Fig.(13):	ROC curve.	100		

LIST OF ABBREVIATION

AASLD American Association for the Study of Liver Disease

Ab AntibodyAFB1 Aflatoxin B1AFP Alpha fetoprotein

Ag Antigen

AIH Autoimmune hepatitis

AJCC American Joint Committee on Cancer

ALP Alkaline phosphatase
ALT Alanine transaminase
AR Acyclic retinoid

AST Aspartate transaminase

BCLC Barcelona Clinic Liver Cancer
CEA Carcinoembryonic antigen
CLD Chronic liver disease

CLIP Cancer of the Liver Italian Program

CT Computerized tomography

CTA Computerized tomography angiography

CTAP Computerized tomography angioportographyCTHA Computerized tomography hepatic angiography

DCP Des-γ-carboxyprothrombine

FDA Food & Drug Administration

FLC Fibrolamellar carcinoma

GGT Gamma glutamyltranspeptidase

HAP Hepatic arterial phaseHBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virusHFLs Hepatic focal lesionsHGF Hepatocyte growth factor

HGV Hepatitis G virus

HIFU High intensity focused ultrasound

IFN- α Interferon- α

IGF-\beta Insulin-like growth factor β

ILP Interstitial laser photocoagulationINR International normalization ratioIRS-1 Intracellular receptor substrate-1

LC Liver cirrhosis

LIST OF ABBREVIATIONS

LTAE Lipiodol trans arterial embolization

LTx Liver transplantation

M Mean

MRI Magnetic resonance imaging
 msAFP Monosialyted alpha fetoprotein
 NAFLD Non-alcoholic fatty liver disease
 NASH Non-alcoholic steatohepatitis
 PAI Percutaneous acetic acid injection

PBC Primary biliary cirrhosis
PC Prothrombin concentration
PCR Polymerase chain reaction
PDGF Platelet derived growth factor
PEI Percutaneous ethanol injection
PET Positron emission tomography

PLTs Platelets

PSI Percutaneous hot saline injection

PT Prothrombin time
PVP Portal venous phase
RFA Radiofrequency ablation
ROC Receiver operating curve

SBP Spontaneous bacterial peritonitis

SD Standard deviation

TACE Trans arterial chemoembolization

TAE Trans arterial embolization

UCSF University of California at San Francisco

US Ultrasound

INTROUDUCTION

HCC is one of the most common and aggressive cancers worldwide. It has been the third cancer killer worldwide and the second cancer killer China since 1990s (Yang et al., 2005).

Globally, the 5-year survival rate of HCC is <5% and $\sim598,000$ HCC patients die each year (**Parkin et al., 2005**).

The high mortality associated with this disease is mainly attributed to the inability to diagnose HCC patients at an early stage. In fact, most symptomatic HCC patients are diagnosed at an advanced stage, thus precluding their chance for surgical intervention (**Yuen et al., 2000**).

In contrast, HCC patients who were diagnosed at an early stage and received curative resection had a significantly improved survival time(Poon et al., 2002)

Detection of, α -fetoprotein (AFP) in the serum of HCC patients in 1970s, has been the only serologic marker widely used for diagnosing HCC patients. This marker allows the identification of a small set of HCC patients with smaller tumors, and these patients have a relatively long-term survival rate following curative treatment(**Zhou et al., 2000**). Thus, early detection and resection have been generally recognized as the most important factors to achieve long-term survival for HCC patients (**Poon et al., 2002**)

Presently, the only approach to screen for the presence of HCC in high-risk populations is the combination of serum AFP and ultrasonography (Nakakura and Choti., 2000).

However, elevated serum AFP is only observed in about 60% to 70% of HCC patients and, to a lesser extent (33-65%), in patients with smaller HCCs (**Johnson.**, **2001**)

Moreover, nonspecific elevation of serum AFP has been found in 15% to 58% of patients with chronic hepatitis and 11% to 47% of patients with liver cirrhosis (**Kim et al., 2004**).

Therefore, it is necessary to identify new serologic HCC biomarkers that have a sufficient sensitivity and specificity for the diagnosis of HCC patients, especially in AFP-normal and/or smaller HCC cases. A significant increase in the expression of the candidate genes ((i.e., SERPINI1, and QP-C,) could be detected in most of the HCC samples, including those with normal serum AFP and small tumors.(Jia., 2007)

AIM OF THE WORK

To determine the expression profile of two candidate biomarkers (SERPINI1, and QP-C) in the liver biopsy in patients with HCC on top of liver cirrhocis and to compare their expression in patients with HCV whether they are cirrhotic or not as well as in normal subjects.

CHAPTER I EPIDEMIOLOGY

EPIDEMIOLOGY OF HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC) represents approximately 85-90% of primary malignant tumors of the liver (*El Serag and Rudolph*, 2007). It is the fifth most common cancer worldwide and the third most common cancer in mortality (*Parkin*, 2001).

• Global incidence of hepatocellular carcinoma:

Liver cancer burden is not distributed evenly throughout the world. Most HCC cases (more than 80%) occur in either sub-Saharan Africa or in Eastern Asia. China alone accounts for more than 50% of the world's cases. North and South America, Northern Europe, and Oceania are low-rate (less than 5.0/100,000) areas for liver cancer among most populations. (*El Serag and Rudolph*, 2007).

An exception to the predominance of HCC among primary liver cancer is the Khon-Kaen region of Thailand, which has one of the world's highest rates of liver cancer (annual age-standardized incidence rate during1993 to 1997 men, 88.0/100,000; women, 35.4/100,000) (*Parkin*, 2002). However, because of endemic infestation with liver flukes, the major type of liver cancer in this region is intrahepatic cholangiocarcinoma rather than HCC (*Okuda et al.*, 2002).

• Incidence of hepatocellular carcinoma in Egypt:

HCC is now a rather common malignancy in Egypt, which usually develops on top of liver cirrhosis of viral origin. Both hepatitis C virus (HCV) & hepatitis B virus (HBV) infections increased the risk of HCC in

CHAPTER I EPIDEMIOLOGY

Egyptian patients. Because of the high prevalence rate of HCV in cirrhotic Egyptian patients, it accounts for most HCC cases in Egypt (*Hassan et al.*, 2001). Over a decade (1993-2002), there was nearly a twofold increase of the proportion of HCC among chronic liver disease (CLD) patients in Egypt with a significant decline of HBV and slight increase of HCV as risk factors (*El-Zayadi et al.*, 2005).

Sex distribution

In almost all populations, males have higher liver cancer rates than females, with male: female ratios usually averaging between 2:1 and 4:1. At present, the largest discrepancies in rates (more than 4:1) are found in medium-risk European populations (*El Serag and Rudolph*, 2007).

The reasons for higher rates of liver cancer in males may be related to differences in exposure to risk factors. Men are more likely to be infected with HBV and HCV, consume alcohol, smoke cigarettes, and have increased iron stores. However, experiments show a 2- to 8-fold increase in HCC development in male mice; these data support the hypothesis that androgens influence HCC progression rather than sex-specific exposure to risk factors (*Rudolph et al.*, 2000).

Age distribution

The global age distribution of HCC varies by region, incidence rate, sex, and, possibly, by etiology. In almost all areas, female rates peak in the age group 5 years older than the peak age group for males. In low-risk populations (e.g., United States, Canada, and United Kingdom), the highest age-specific rates occur among persons aged 75 and older. A similar pattern is seen among most high-risk Asian populations (e.g., Hong Kong