"ESTIMATION OF FOXP3 LEVEL IN THE BLOOD OF VITILIGO PATIENTS".

Thesis

Submitted for fulfillment of the

Master degree (M.Sc) in Dermatology, Andrology & S.T.DS

BY:

Eman Raafat Abdel Fattah Mohamed Said (M.B.B.ch.)

Supervised by

Prof. Dr . Mostafa Abou El Ela

Professor of dermatology & STDs Faculty of Medicine Cairo University

Prof. Dr. Laila Ahmed Rashed

Professor of Biochemistry
Faculty of medicine
Cairo University

Dr. Rehab Aly Abdelsalam Hegazy

Lecturer of dermatology Faculty of medicine Cairo University

Faculty of medicine Cairo University 2011

ACKNOWLEDGEMENTS

Acknowledgements

First and foremost thanks to "God" for granting me the power to proceed and finish this work.

I would like to express my endless gratitude and appreciation to **Dr**. **Mostafa Abou El Ela** Professor of Dermatology, Faculty of medicine, Cairo University, for giving me the honor of working under his supervision and for his generous cooperation, great help and encouragement throughout this work and always.

I would like to acknowledge my profound gratitude to **Dr. Rehab Aly Abdel Salam Hegazy** Lecturer of Dermatology, Faculty of medicine, Cairo University, for her effort in guiding and giving me instructions throughout this work in order to come in this form.

I would like also to express my deep thanks to **Dr. Laila Ahmed Rashed**Professor of Biochemistry, Faculty of medicine, Cairo University, for her effort, support and encouragement.

I would like to thank **Dr. Marwa Mohamed Fawzy** Assistant Professor of Dermatology, Faculty of medicine, Cairo University, for her support and encouragement to finish this work & **Dr. Mostafa Mohamed** Assistant Lecturer of Biochemistry, Faculty of medicine, Cairo University, for the statistical analysis of this work.

Finally I am grateful to my **Mother**, **Husband**, **Daughter** and **all my family** for baring me and for their support and encouragement.

List of contents

page

List of Figures	i
List of Tables	iii
List of Abbreviations	iv
Abstract	viii
Introduction & Aim of work	1
Review of Literature	
➤ Chapter 1: Vitiligo	4
➤ Chapter 2: T regulatory cells	34
Patients & methods	50
Results	60
Discussion	66
Conclusion & recommendations	73
Summary	74
References	76
Arabic summary	93

List of figures

Figure No.		Page
Figure	Picture shows Symmetrical distribution of	8
1	depigmentation in generalized vitiligo	
Figure 2	Picture shows Vitiligo patches involving face and neck	8
	of a middle-aged woman	
Figure 3	Diagram to show T helper cell commitment towards	15
	specific lineages	
Figure 4	Diagram to show Cytototoxic T-cell response in	18
	perilesional skin of active vitiligo	
Figure 5	Working model of the TH17 differentiation pathway.	20
Figure 6	Diagram to show Proinflammatory effects of	21
	interleukin-17	
Figure 7	Diagram to show Sequence of events in the mounting	24
	of an auto-immune response in vitiligo	
Figure 8	Diagram to show possible role of skin melatoninergic	27
	system (SMS) in vitiligo pathogenesis.	
Figure 9	Arguments for destruction of melanocytes by	32
	apoptosis	
Figure 5 Figure 7 Figure 8	perilesional skin of active vitiligo Working model of the TH17 differentiation pathway. Diagram to show Proinflammatory effects of interleukin-17 Diagram to show Sequence of events in the mounting of an auto-immune response in vitiligo Diagram to show possible role of skin melatoninergic system (SMS) in vitiligo pathogenesis. Arguments for destruction of melanocytes by	20 21 24 27

Figure	Diagram to show Differentiation of T helper cell	35
10	subsets	
Figure 11	Diagram shows development of T regulatory cells	39
Figure 12	Schematic diagram to show proposed relationships between Th17 cells and T regulatory cells.	47
Figure 13	Box Plot of Foxp3 concentration of the studied groups.	62
Figure 14	Box Plot of Foxp3 concentration among different types of vitiligo.	63
Figure 15	Negative correlation between FOXP3 and stress as a precipitating factor in vitiligo group	65

List of tables

page

Table	Summary of the dermographic data of cases and controls.	60
1		
Table	Clinical features of the studied groups	61
2		
Table	This table shows FOXP3 concentration regarding the	63
3	Course of disease.	
Table	This table shows FOXP3 concentration as regards family	64
4	This table shows POXI 3 concentration as regards failing	V 4
4	history of patients.	
Table	FOXP3 concentration as regards presence of stress as a	64
5	precipitating factor.	

List of abbreviations

ADCC	Antibody-dependent cellular cytotoxicity
AFMK	N(1)-acetyl- $N(2)$ -formyl-5-methoxykynuramine. An
	antioxidant metabolite of melatonin.
APCs	Antigen presenting cells
6-BH4	Co-factor (6R)-5,6,7,8 tetrahydrobiopterine
<i>C</i> 3	Complement 3
CAT	Catalase enzyme
CCL20	Class Chemokine (C-C motif) ligand 20
CCL22	Class Chemokine ligand 22
CCR6	Class Chemokine receptor 6
CGRP	Calcitonin gene related peptide
CLA	Cutaneous lymphocyte- association antigen
CTL	Cutaneous T lymphocytes
CTLA-4	Cytotoxic T lymphocyte-associated antigen 4
DC	Dendritic cells
D N	Double negative regulatory T cells (TCR+CD3+CD4-CD8-)
EAE	Experimental autoimmune encephalitis
ETC	Electron transport chain
FOXP3	Forkhead box protein 3
GATA3	Trans-acting T-cell-specific transcription factor GATA-3 is

	a protein that in humans is encoded by the GATA3 gene
GITR	Glucocorticoid-induced tumor necrosis factor receptor
	family-related protein
GTP	Guanosine triphosphate
HLA	Human leucocytic antigen
H2O2	Hydrogen peroxide
ICAM-1	Intracellular adhesion molecule- 1
IDO	Indoleamine 2,3-dioxygenase
IFN γ	Interferon gamma
IKP	Isomorphic Koebner phenomenon
IL	Interleukin
IPEX	X-linked, immuno-dysregulation, polyendocrinopathy,
	enteropathy syndrome
iTregs	Inducible Treg population
KDa	Kilo Dalton
LAG3	Lymphocyte activation gene-3
LAP	Latency associated peptide
LC	Langerhans cells
MALT	Mucosa-associated lymphoid tissue
MAO	Mono amine oxidase enzyme.
MCHR1	Melanin-concentrating hormone receptor 1
MHC	Major histocompatibility complex
NK	Natural killer cells

nTregs	Naturally occurring Foxp3+ Treg population
4aOH-	4ahydroxy- BH4 dehydratase
BH4	
PBMCs	Peripheral blood mononuclear cells
Pmel17	Melanosomal matrix protein gp100
RA	Rheumatoid arthritis
Rab38	Ras-related protein Rab-38 is a protein that in humans is
	encoded by the RAB38 gene
RORγt	The orphan nuclear receptor, retinoic acid-related orphan
	receptor gamma t
ROS	Reactive oxygen species
SMS	skin melatoninergic system
SOX 10	The melanocyte transcriptor factor
STAT	Signal transduction and activator of transcription
SV	Segmental vitiligo
4-TBP	4-tertiary butylphenol
TCR	T cell receptor
TGFβ	Transforming growth factor beta
Th	T helper cells
Thp	T helper cell precursors
TLRs	Toll like receptors
Tol-DC	Tolerogenic dendritic cells
Tr1	Type 1 regulatory T cells

T regs	T regulatory cells
TYRP	Tyrosinase related protein
UVR	Ultra violet rays

Abstract

Background: Vitiligo is a common depigmenting disorder which may have devastating psychological and social consequences. The exact cause is still unknown but autoimmunity is highly implicated in the pathogenesis. T regulatory cells are among the cells that control autoimmunity.

Objective: Is to estimate the level of Foxp3 which serves as the dedicated mediator of the genetic program governing Tregs development and function which has questionable immunomodulatory function in vitiligo, aiming to verify the possible role of them in the pathogenesis of such disease.

Methods: The present case controlled cross sectional study included 40 vitiligo patients and 40 age and sex matched healthy controls. Presence of any systemic or dermatological disease affecting the immune system as well as receiving any systemic or topical immunomodulatory treatments for 3 months prior to the study precluded participation. After history taking & clinical examination, a 5 ml blood sample was retrieved from each patient and control to determine the level of Foxp3 gene expression by quantitative real time PCR.

Results: The mean level of Foxp3 was found to be significantly lower in the vitiligo patients (0.39 ± 0.29) in comparison to the healthy control subjects (1.48 ± 0.50) (p<0.0001). The non-significant (p>0.05) least levels were reported among the segmental type, as well as in those with a progressive disease, and in those with a positive family history. Concerning the relationship between Foxp3 and stress a significantly lower value was reported with presence of stress (p<0.05) and a negative correlation was observed between Foxp3 and the presence of stress as a precipitating factor (r = -0.45, p = 0.004).

Conclusion: The current study demonstrates the diminishing T reg cells to be

another important player sharing in the complex pathogenesis of vitiligo. It has

been shown to be associated with a less favorable prognosis of the disease.

Key word: p3-vitiligo-Tr1-SOX 10-Tol_DC

iх

Introduction

Vitiligo is a common depigmenting disorder which may have devastating psychological and social consequences and is characterized by the presence of circumscribed white macules in the skin due to the destruction of melanocytes in the epidermis(*Sandoval-Cruz et al.*, 2011).

The cause of vitiligo appears to be a combination of genetic effects in both the immune system and the melanocyte itself with a precipitating factor instigating their interaction and resulting in the melanocyte destruction (*Boissy and Nordlund*, 2011).

The autoimmune pathogenesis of the disease has become a rapidly evolving field of research. Detection of circulating melanocyte antibodies in human and animal models implicates a possible role of humoral immunity. Histological and immunohistochemical studies in perilesional skin suggest the involvement of cellular immunity in vitiligo. Recently, T-cell analyses in peripheral blood further support this hypothesis (*Ongenae et al.*, 2003).

Effector T helper (Th) cells derive from progenitor naïve CD4+ T cells, after maturational process induced by antigenic stimulation. Their commitment depends on complex interactions with antigen presenting cells in a permissive milieu, including antigenic type and load, costimulatory molecules and cytokine signaling. Committed CD4+ T cells may differentiate into Th1, Th2, TH17 phenotypes (the effector Th cell triade), with distinct cytokine products and biological functions, or evolve into the inducible regulatory T (Treg) lineage, with immunomodulatory functions (*Fietta and Delsante*, 2009).

INTRODUCTION & AIM OF WORK

Alterations in cellular immunity, including CD4(+) T and CD8(+) T lymphocytes, have been proposed in the pathogenesis of vitiligo. There is also a proposed role for cytokines in the depigmentation observed in vitiligo. Along with the multiple factors that have been implicated in the pathogenesis of vitiligo, reduced serum transforming growth factor-beta levels, has also been suggested to contribute to enhanced cellular immunity. This may facilitate the occurrence of vitiligo by leading to diminished maturation of regulatory T cells, followed by impaired inhibition of inflammation (*Basak et al.*, 2009).

Abnormality of CD4+CD25+Treg cells can be observed in patients with progressive vitiligo. Decrease amount of CD4+ CD25+ Treg cells and decrease expression of Foxp3 impair the suppressive activity of CD4+ CD25+ Treg cells which may be a factor in pathogenesis of vitiligo (*Ting-huil et al.*, 2009).

Forkhead box P3 (FoxP3) maintains a pattern of gene expression necessary for T reg cell function (*Isomura et al.*, 2010) and regulates T (reg) development. It has been proven that epigenetic modification agents that can induce Foxp3 expression promote the conversion of naïve T cells to T regs (*Moon et al.*, 2009). Thereby it can be deduced that Foxp3 is immunomodulatory marker for the T regs (*Lee et al.*, 2010).

So measuring Foxp3 level might help to know the role of T regulatory cells in the pathogenesis of vitiligo.

INTRODUCTION & AIM OF WORK

Aim of work:

The aim of this study was to estimate level of Foxp3 which serves as the dedicated mediator of the genetic program governing Tregs development and function which has questionable immunomodulatory function in vitiligo, aiming to verify the possible role of them in the pathogenesis of such disease.