

FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

ENVIRONMENTAL MITIGATION OF WETLANDS IN EGYPT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering

Eng. Fatma Akl Moustafa Mohammad

B.Sc., Civil Engineering, Zagazig University, 2004 M.Sc., Civil Engineering, Ain shams University, 2011

Supervises PROF. DR. IMAN MAHMOUD ELAZIZY

Prof. of Hydraulics and Water Resource Faculty of Engineering, Ain Shams University, Cairo

PROF. DR. MAHMOUD MOHAMED ABDEL AZEEM

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo

PROF. DR. GAMAL ABD EL NASSER KAMEL

Prof. of Soils and Water Quality National Water Research Center, Qalubia, Egypt

DR. MOHAMED MAHMOUD ELFAWY

Assistant Prof. in Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University, Cairo

FACULTY OF ,ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

ENVIRONMENTAL MITIGATION OF WETLANDS IN EGYPT

Eng. Fatma Akl Moustafa Mohammad

B.Sc., Civil Engineering, Zagazig University, 2004 M.Sc., Civil Engineering, Ain shams University, 2011

Examiners Committee

Signature

Prof. Dr. Aly Nabih Bahrawy

Professor of Hydraulics Faculty of Engineering, Ain Shams University, Cairo

Prof. Dr. Fatma Hassan Shaltout

Professor of Water Resources Management Faculty of Engineering, Helwan University, Cairo

Prof. Dr. Iman Mahmoud Elazizy

Professor of Hydraulics and Water Resources Faculty of Engineering, Ain Shams University, Cairo

Prof. Dr. Mahmoud Mohamed Abdel Azeem

Professor of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo

Prof. Dr. Gamal Abd El Nasser Kamel

Professor of Soils and water Quality National Water Research Center, Qalubia

Date: --/-/2018

DEDICATION

This work is dedicated to who suffered to educate, prepare, build capacity and help

TO MY FATHER SOUL And MOTHER

Also thanks **TO MY SIBLING**

STATEMENT

This dissertation is submitted to Ain Shams University for partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering

The work included in this thesis was carried out by the author in the Irrigation and Hydraulics Department, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date:

Name: Fatma Akl Moustafa

Signature:

Ain Shams University Faculty of Engineering Irrigation and Hydraulics

Name: Fatma Akl Mostafa Muhammad

Thesis: Environmental Mitigation of Wetlands in Egypt

Abstract

In terms of the importance of preserving the aquatic ecosystem of wetlands in Egypt and the Aquatic resource Functions with preserving the Services, this research was initiated with this objective through the numerically investigating the Borollos Lake water quality that deteriorated due to the huge of discharging the wastewater in order to enhance its quality. Primarily, the available measured data was collected in order to visualize a complete data picture the lake, and also, filed visits were carried out; Literature was assembled and reviewed, from which A double standard approach was implemented, where model investigations, for water quality hydrodynamics, were achieved by SMS12.1.7 (SMS-TABS). A model for simulating the hydrodynamic conditions and water quality within the lake has proved to be a good and effective model for this purpose and has proved its good ability to simulate the conditions inside the lake, which has enabled the use of several scenarios to restore the ecosystem of El-Borollos lake and propose different scenarios to improve the quality of the lake until the lake recovers its ecosystem, The results of water quality readings, and the environmental impact assessment of these scenarios through the implementation of the RIAM matrix, the recommended scenario was a scenario of adding a new connects channel between the lake and the Mediterranean with the treatment of southern banks, In addition, the research provided various engineering solutions that contribute to maintaining the quality of water and restoring the lake's environmental and water system by controlling the deterioration of water quality and also the possibility of implementing the recommended solutions in the form of General in lakes and other wetlands in Egypt.

The study concludes with the following recommendations:

- The importance of the treatment of southern drains before pouring in the lake.
- The importance of the widening and dredging of the old Bughaz because of its positive impact in improving the salinity level in addition to, it is improve the exchange of water currents between the lake and the Mediterranean Sea.
- The importance of establishing a new channel linking the lake to the subject of study and the Mediterranean Sea in the western region.
- The thesis concluded the relationship between the calculation of the water depth and concentration of organic matter and also between them and the different temperatures.
- It is necessary to apply the RIAM matrix before and during the implementation of the proposed solution to identify the weak points and negative points with finding solutions and also to clarify the negative effects on the environment.

Supervisors:

Prof. Dr. Iman Mahmoud Elazizy

Prof. Dr. Mahmoud Mohamed Abdel Azeem

Prof. Dr. Gamal Abd El Nasser Dr. Mohamed Mahmud Elfawy

ACKNOWLEDGEMENT

Praise is to Almighty God for the support and enthusiasm.

Deepest gratitude and sincerest appreciation are due to *Prof. Dr. Iman Mahmoud El-azizy* Professor of Hydraulics and Water Resource, Faculty of Engineering, Ain Shams University, for help, encouragement, co-operation and advice, all throughout this research.

Also, thanks and gratefulness to *Prof. Dr. Mahmoud Mohamed Abdel Azeem*, Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University, for his encouragement, co-operation and patience.

Thanks are extended to *Prof. Dr. Gamal Abd El Nasser*, Professor of Soil and Water Quality, National Water Research Center, for his help, and co-operation during this research.

Deepest gratitude and sincerest appreciation are due to *Prof. Dr. Ali Nabih el-bahrawy* Professor of Hydraulics, Faculty of Engineering, Ain Shams University, for help, encouragement, co-operation and advice, all throughout this research.

Deep thanks are, also due to *Dr. Mohamed Mahmoud Fawy* Assistant Professor in Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for his help and co-operation all throughout this study.

Gratitude is expressed to *Dr. Ashraf mustafa* Assistant Professor in Irrigation and Hydraulics Department, Ain Shams University, for his co-operation during the numerical modeling process.

I wish to express my deepest thanks, gratitude, and appreciation to mother and father for their love, warm caring, support and great effort throughout the time of this study.

Gratefulness to whoever, directly or indirectly helped in the completion of this thesis.

CONTENTS

CHAPTER ONE: INTRODUCTION	1
1.1.OVERVIEW	1
1.2. PROBLEM STATEMENT	
1.3 OBJECTIVES	
1.4. METHODOLOGY	
1.5. THESIS OUTLINE	
CHAPTER TWO: LITERATURE REVIEW	5
2.1. OVERVIEW	
2.2. WETLANDS	
2.2.1 TYPES OF WETLANDS	
2.2.1.1 NATURAL WETLANDS	
2.2.1.2 CONSTRUCTED WETLAND	
2.3 ENVIRONMENT IMPACT ASSESSMENT	
2.4 PROJECT MANAGEMENT SYSTEM	
2.5 COASTAL LAKES	
2.6 LAKES IN EGYPT	
2.7 HYDRODYNAMIC ASPECTS	
2.9 HYDRODYNAMIC AND WATER QUALITY MODELS	
2.11 HYDRODYNAMIC MODELLING IN EGYPT	
2.12 WATER QUALITY MODELLING IN EGTFT	
2.13 MODELLING WITH DELFT-3D	
2.14 HEC-RAC MODELLING	
2.15 CMS MODELLING	
2.16 DELFT-3D MODELLING IN BOROLLOS	
2.17 SMS MODELLING	
2.17 SIVIS MODELLING	13
CHAPTER THREE: STUDY AREA DESCRIPTION	17
3.1 STUDY AREA DESCRIPTION	17
3.2 WATER BALANCE	
3.3. DATA ASSEMBLY	
3.4 SIMULATION PLAN	
CHAPTER FOUR: NUMERICAL MODELLING	
4.1 HYDRODYNAMIC MODELLING STAGE	
4.2 HYDRAULIC RUN OUTPUT	
4.3 MODEL VERIFICATION	
4.4 WATER QUALITY MODELS	32

4.4.1 SALINITY PARAMETER CALIBRATION
4.4.2 DISSOLVED OXYGEN CALIBRATION
4.4.3 COD PARAMETER CALIBRATION
4.4.4 BOD PARAMETER CALIBRATION
4.4.5 PO4 PARAMETER CALIBRATION
4.4.6 NH4 PARAMETER CALIBRATION
4.4.7 NO3 PARAMETER CALIBRATION
4.4.8 Zn PARAMETER CALIBIRATION
4.5 HYDRODYNAMIC MODELS COMMENTS
4.6 WATER QUALITY MODELING COMMENTS 54
CHAPTED FIVE, DECLI TO ANALYOIC AND DISCUSSIONS 50
CHAPTER FIVE: RESULTS ANALYSIS AND DISCUSSIONS 56
5.1 OVERVIEW56
5.1.1 METHODOLOGY SCENARIOS56
5.2 DIVERTING OF DRAINS (SCENARIOS 1& 2)58
5.2.1. HYDRODYNAMICS MITIGATION
5.2.2 SALINITY MITIGATION
5.2.3 BOD MITIGATION 62
5.3 WIDENING BUGHAZ INLET (3rd SCENARIO)64
5.3.1 HYDRODYNAMICS MITIGATION
5.3.2 SALINITY MITIGATION 67
5.3.3 DO MITIGATION
5.3.4 BOD MITIGATION
5.4 WIDENING BUGHAZ AND DIVERTING DRAINS (4th&5th
SCENARIOS)71
5.4.1 HYDRODYNAMIC MITIGATION71
5.4.2 SALINITY MITIGATION71
5.4.3 BOD MITIGATION
5.5 DIVERTING DRAIN11 (6th&7th SCENARIO)76
5.5.1 HYDRODYNAMICS MITIGATION76
5.5.2 BOD MITIGATION
5.5.3 SALINITY MITIGATION
5.6 WIDENING BUGHAZ & DIVERTING DRAIN11 (8th
SCENARIO)80
5.6.1 HYDRODYNAMICS MITIGATION80
5.6.2 SALINITY MITIGATION81
5.6.3 BOD MITIGATION
5.7 DIVERTING BRIMBAL DRAIN (9th SCENARIO)82
5.7.1 HYDRODYNAMICS MITIGATION 82
5.7.2 SALINITY MITIGATION83
5.7.2 SALINITY MITIGATION 83 5.7.3 BOD MITIGATION 83
5.7.2 SALINITY MITIGATION

5.8.1 HYDRODYNAMICS MITIGATION	84
5.8.2 SALINITY MITIGATION	85
5.8.3 BOD MITIGATION	85
5.9 WIDENING BUGHAZ INLET AND DIVERTING TIRA DRAIN (1	11th
SCENARIO)	86
SCENARIO)	. 86
5.9.2 SALINITY MITIGATION	
5.9.3 BOD MITIGATION	. 88
5.10 WIDENING BUGHAZ INLET AND DIVERTING PUMP STATI	ION
(12th SCENARIO)	. 88
5.10.1 HYDRODYNAMICS MITIGATION	. 88
5.10.2 BOD MITIGATION	. 89
5.11 DREDGING BUGHAZ INLET (13th SCENARIO)	. 90
5.11.1 HYDRODYNAMICS MITIGATION	. 90
5.11.2 SALINITY MITIGATION	. 92
5.11.3 BOD MITIGATION	. 93
5.12 DREDGING AND WIDENING BUGHAZ (14th SCENARIO)	. 94
5.12.1 HYDRODYNAMICS MITIGATION	
5.12.2 SALINITY MITIGATION	95
5.12.3 BOD MITIGATION	96
5.13 DREDGING AND WIDENING BUGHAZ	97
(15th SCENARIO)	97
5.13.1 HYDRODYNAMICS MITIGATION	97
5.13.2 SALINITY MITIGATION	
5.13.3 BOD MITIGATION	
5.14 DREDGING AND WIDENING BUGHAZ AND ADDING MC	
INLETS (16th SCENARIO)	98
5.14.1 HYDRODYNAMICS MITIGATION	
5.14.2 SALINITY MITIGATION	
5.14.3 BOD MITIGATION	101
5.15 DREDGING BUGHAZ (17th SCENARIO)	102
5.15.1 HYDRODYNAMICS MITIGATION	
5.15.2 SALINITY MITIGATION	104
5.15.3 BOD MITIGATION	
5.16 DREDGING BUGHAZ (18th SCENARIO)	
5.16.1 HYDRODYNAMICS MITIGATION	
5.16.2 SALINITY MITIGATION	
5.16.3 BOD MITIGATION	
5.17 DREDGING BUGHAZ WITH ADDED ONECHANNEL (1	
SCENARIO)	
5.17.1 HYDRODYNAMICS MITIGATION	
5.17.2SALINITY MITIGATION1	10
5.17.3BOD MITIGATION	10

5.18 DREDGING BUGHAZ WITH ADDED THREE CHANNE	(20th
SCENARIO)	
5.18.1 HYDRODYNAMICS MITIGATION	113
5.18.2SALINITY MITIGATION	114
5.18.3BOD MITIGATION	
5.19 DREDGING BUGHAZ WITH ADDED THREE CHAN	
(21thSCENARIO)	116
5.19.1 HYDRODYNAMICS MITIGATION	117
5.19.2SALINITY MITIGATION	
5.19.3BOD MITIGATION	
5.20 DREDGING AND WIDENING BUGHAZ WITH ADDING M	ORE
INLET(22th SCENARIO)	
5.20.1 HYDRODYNAMICS MITIGATION	
5.20.2SALINITY MITIGATION	.120
5.20.3 BOD MITIGATION121	
5.21 SCENARIOS COMPARISON	
5.22 SALINITY AND BOD TRENDS	. 127
5.22.1 BOD TRENDS	
5.22.2 SALINITY TRENDS WITH DEPTH AND TEMPERATURE	
5.23 EVALUATION OF PROPOSED SCENARIOS	. 140
CHAPTER SIX: CONCLUSION AND RECOMMENDATION	. 144
6.1 CONCLUSION	1 1 1
6.2 RECOMMENDATIONS	
0.2 RECOMMENDATIONS	. 145
LIST OF REFRENCES	. 146
	• 1 .0
APPENDIX A	
	. 152
APPENDIX B	
	. 153
	. 153 . 154
APPENDIX C	. 153 . 154 . 155
APPENDIX CAPPENDIX D	. 153 . 154 . 155
APPENDIX C APPENDIX D APPENDIX E	. 153 . 154 . 155 . 156 . 157
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G	. 153 . 154 . 155 . 156 . 157 . 163
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G	. 153 . 154 . 155 . 156 . 157 . 163
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G	. 153 . 154 . 155 . 156 . 157 . 163
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX J LIST OF TABLES	. 153 . 154 . 155 . 156 . 157 . 163 . 164
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX J LIST OF TABLES Table (5.1) ENVIRONMENTAL IMPACT OF 4TH SCENARIO	. 153 . 154 . 155 . 156 . 163 . 164
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX J LIST OF TABLES Table (5.1) ENVIRONMENTAL IMPACT OF 4TH SCENARIO Table (5.2) ENVIRONMENTAL IMPACT OF 15TH SCENARIO	. 153 . 154 . 155 . 156 . 163 . 164
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX J LIST OF TABLES Table (5.1) ENVIRONMENTAL IMPACT OF 4TH SCENARIO	. 153 . 154 . 155 . 156 . 157 . 163 . 164

LIST OF FIGURES

CHAPTER ONE: INTRODUCTION

Figure (1.1) Methodology Plan	3
CHAPTER TWO: LITERATURE REVIEW	
Figure (2.1) Water resource decision support system framework	8
Figure (2.2) four large lagoons on the Nile coast (In Egypt)	
CHAPTER THREE: DISCRIPTION OF STUDY AREA	
Figure (3.1) Geographical location of Borollos Lake	
Figure (3.2) image for Borollos Lake and drains outfall	
Figure (3.3) Measured water levels in Lake Borollos	
Figure (3.4) Water quality monitoring stations inside the lake	
Figure (3.5) Seasonal variation of Drains discharge	
Figure (3.6) Stations Temperature inside Borollos Lake	21
CVI A PATTE TO VID AND ATTACK A MODELLA MA	
CHAPTER FOUR: NUMERICAL MODELLING	2.4
Figure (4.1) Bathymetric map of Borollos Lake and drains Location	
Figure (4.2) Bathymetry mesh for bed elevations of Borollos Lake	
Figure (4.3) Contour Bed Elevations with drains inlet for Lake	
Figure (4.4) Velocity vectors and Direction inside the lake with	26
The absence of wind force and tide wave	26
Figure (4.5) Simulation Water Depths inside the lake	
Figure (4.6) Velocity magnitude and Direction of flow in	21
Figure (4.7) Water depth values at Bughaz Outlet in case of win	20
Figure (4.8) Velocity and flow direction in the lake in case of wind	
&Tidal wave	
Figure (4.9) Velocity and Flow Direction around Bughaz in	
Case of wind force and (plan A-A)	
Figure (4.10) Comparison between the measured and simulated	
Water depth values (m) at monitoring station	
Figure (4.11) Correlation coefficient between the measured and	
Simulated water depth values (m) at monitoring station	
Figure (4.12) Comparison between the measured and simulated	
Water sea levels values (m) at monitoring station	
Figure (4.13) Correlation coefficient between the measured and sim	
water surface levels at monitoring station	
5	

Figure (4.14) Seasonal variation of salinity (gm/l.) distribution at different
stations in Borollos Lake
Figure (4.15) Borollos lake water salt intrusion (gm/l.), and around
Bughaz Outlet
Figure (4.16) Comparison between the measured and simulated values for
Salinity values at monitoring station
Figure (4.17) the correlation coefficient between the measured and
The simulated salinity values (gm/l.) at monitoring station
Figure (4.18) Seasonal variation of DO (mg/l) at different stations In
Borollos Lake
Figure (4.19) Water quality parameter distribution DO (mg/l)
In Borollos Lake
Figure (4.19a) Borollos Lake water DO parameter at western part
(Plan A-A)
Figure (4.20) Comparison between the measured and simulated DO values
(mg/l) at monitoring station
Figure (4.21) Correlation coefficient between the measured and Simulated
DO values at monitoring station39Figure (4.22) Seasonal variation of COD
(mg/l) at different stations In Borollos Lake
Figure (4.23) Water quality parameter distribution, COD (mg/l)
In Borollos Lake
Figure (4.24) Water quality simulated for COD (mg/l) around
West region of Borollos Lake (plan A-A)41
Figure (4.25) Comparison between the measured and simulated
COD (mg/l) values at monitoring station
Figure (4.26) Correlation coefficient between the measured and42
Simulated values at monitoring station
Figure (4.27) Seasonal variation of BOD (mg/l) at different station in
Borollos lake
Figure (4.28) Parameter distribution BOD (mg/l) in the lake
Figure (4.29) Comparison between the measured and simulate
BOD (mg/l) values at monitoring station
Figure (4.29a) Correlation coefficient between the measured and
Simulated BOD values at monitoring station
Figure (4.30) Seasonal variation of PO_4 ($\mu g/l$) at different stations in
Borollos Lake
Figure (4.31) Water parameter distribution PO4 (µg/l) across
Borollos Lake
Figure (4.32) Comparison between the measured and simulated PO ₄ 48
Values at monitoring station
Figure (4.32a) Correlation coefficient between the measured and
Simulated at monitoring station
Simulated at monitoring station40

Figure (4.33) Seasonal variation of NH ₄ (mg/l) at different stations
In Borollos Lake49
Figure (4.34) Seasonal variation of NH4 (mg/l) across. Borollos Lake 50
Figure (4.34a) Comparison between the measured and simulated
NH ₄ values at monitoring station
Figure (4.34b) Correlation coefficient between the measured and
Simulated NH4 values at monitoring station
Figure (4.35) Seasonal variation of NO3 at different stations in Borollos
Lake Water quality parameter distribution NO3 (mg/l)
In Borollos Lake
Figure (4.36a) Comparison between the measured and simulated NO ₃ values
at monitoring station
Figure (4.36b) Correlation coefficient between the measured and
Simulated NO ₃ values at monitoring station
Figure (4.37) Seasonal variation of heavy metals (µmg/l) at different stations
in Borollos Lake
In Bolonos Edite
CHAPTER FIVE: ANALYSIS AND RESULTES
Figure (5.1) Scenarios Groups
Figure (5.2) Water levels (m), in Borollos, (1st scenario)
Figure (5.3) Water levels (m), in Borollos, (2nd scenario)
Figure (5.4) the water levels comparison between the current case and
1 st scenario60
Figure (5.5) Comparison the water levels (m), between the current and
1st scenario
Figure (5.6) The velocity vector and magnitude at El-Bughaz 1st scenario
61
Figure (5.7) Water salt intrusion (gm/l), in Borollos Lake 1st scenario
Figure (5.7a) Water salt intrusion (gm/l) in Borollos Lake 2nd scenario 61
Figure (5.8) Comparison between scenarios (1th and 2nd) for BOD removal
Efficiency
Figure (5.8a) Comparison between scenario no (1th and 2nd) for the salinity
increasing efficiency
Figure (5.9) Water depth (m) distribution in Borollos
Figure (5.9a) Distribution of water level (m) in Borollos
Figure (5.10) Velocity direction and magnitude, at Bughaz
Figure (5.10a) Velocity direction and magnitude, at Bughaz
At the current state
Figure (5.11) Comparison between the water levels (m) values in current
state and the proposed 3rd, scenario, across drains inlet
Figure (5.12) Water salt intrusion (gm/l) in the lake and in the vicinity of
Bughaz Outlet

Figure (5.12a) Water salt intrusion (gm/l) in the lake and in the vicinity of Bughaz Outlet (plan A-A)
Figure (5.13a) Dissolved oxygen increase ratio (mg/l), in the lake
Figure (5.15) Water distribution parameter BOD (mg/l.) in the lake (3rd scenario)
current state and in the 4th scenario
Figure (5.16a) distribution of water level (m) in Borollos, 4th scenario 72
Figure (5.17) Flow direction and velocity in the vicinity of Bughaz Outlet 73 Figure (5.17a) Water salt distribution parameter (gm/l) in the lake (4th scenario)
Figure (5.18) Water distribution parameter BOD (mg/l) in the lake (4th scenario)
Figure (5.19) Water distribution parameter DO (mg/l) in the lake (4th
scenario)
Figure (5.20) Comparison between the water levels (m) Values in current
state and the 5th scenario
Figure (5.21) Comparison between the first to the 5th scenarios for BOD
removal efficiency
values increase
Figure (5.23) Comparison for water levels (m) values between
The current and proposed scenario at monitoring stations
Figure (5.24) Water distribution parameter BOD (mg/l) in the lake77
(6th scenario)
Figure (5.25) Water distribution parameter BOD (mg/l) in the lake (7th
scenario)
Figure (5.26) water salt distribution in the lake in gm/l
Figure (5.27) Salinity distribution (gm/l) in the Bughaz vicinity
Plan (A-A)
Figure (5.28) BOD removal efficiency at monitoring stations
Figure (5.29) Salinity values (gm/l) at monitoring stations
(6 th and 7 th scenarios)
Figure (5.30) Water levels (m) values winter in the lake
Figure (5.31) Recorded water levels (m) comparison between current and
proposed scenario
Figure (5.32) water salt distributions (gm/l.) in the lake
Figure (5.33) BOD water distribution values (mg/l.) in the lake 82

Figure (5.34) Water levels distribution (m) in the lake	83
Figure (5.35) Water salt distribution (gm/l.) in the lake	83
Figure (5.36) BOD water distribution (mg/l.) in the	lake
	84
Figure (5.37) Distribution of Water surface elevations in the lake	84
Figure (5.38) Water salt distribution in the lake	
Figure (5.39) Water distribution BOD (mg/l.) in the lake	86
Figure (5.40) Water levels distribution in the lake	87
Figure (5.41) Water salt distribution (gm/l) in the lake	87
Figure (5.42) Water distribution BOD (mg/l.) in the lake	88
Figure (5.43) Water levels distribution in the lake	89
Figure (5.44) Water Salt distribution (g/l.) in the lake	89
Figure (5.45) Bed levels (m) distribution in Borollos	90
Figure (5.46) water surface level (m) in Borollos, in winter 2015	90
Figure (5.47) water depth (m) distribution in the lake	91
Figure (5.48) Velocity vector and magnitude in the vicinity of Bughaz	92
Figure (5.49) Velocity vector and magnitude in the vicinity of Bughaz	
Figure (5.50) water salt intrusion (gm/l), in the lake	
Figure (5.51) water BOD distribution (mg/l), in the lake	93
Figure (5.52) comparison between normal case and 14th scenario	94
For water levels (m)	
Figure (5.53) water depth (m) distribution in Borollos	95
Figure (5.54) Velocity vector and magnitude in the vicinity of Bughaz	95
Figure (5.55) water salt intrusion (gm/l), in the lake	96
Figure (5.56) water BOD distribution (mg/l), in the lake	
Figure (5.57) water BOD distribution (mg/l), in the lake	97
Figure (5.58) water levels (m) in winter 2015, in the lake	
Figure (5.59) comparison of water levels values (m) between	99
Normal case and the scenario no.15th	
Figure (5.60) Velocity values (m/s) and its direction in the lake	. 100
Figure (5.61) Velocity value and vector in the vicinity of new inlets	. 100
Figure (5.62) water salt intrusion (gm/l), in the lake	. 101
Figure (5.63) water BOD distribution (mg/l), in the lake	. 101
Figure (5.64) water BOD distribution (mg/l), in the lake	
Figure (5.65) Comparison between different scenarios For BOD	. 102
Removal efficiency	
Figure (5.66) Water surface distribution inside the lake in case of	17th
Scenario (m)	103
Figure (5.67) comparison between normal case and 17th Scenario	
for water level (m)	103
Figure (5.68) Velocity magnitude (m/s) and direction of flow at	
Bughaz Outlet	
Figure (5.69) Water depth distribution inside the lake in case of 18 th	