Computer Science Department Faculty of Computer and Information Sciences Ain Shams University

Diagnosis of Skin Cancer Using Machine Learning Techniques

Dissertation submitted to Computer Science Department
Faculty of Computer and Information Sciences, Ain Shams University
In partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

By

Munya Abdulmajid Arasi

Lecturer Assistance of Information Technology Department Faculty of Engineering, University of Aden, Yemen.

Supervised By

Prof. Dr. Abdel-Badeeh M. Salem Prof. Dr. El-Sayed M. El- Horbaty

Professor of Computer Science Faculty of Computer and Information Sciences Ain Shams University Professor of Computer Science
Faculty of Computer and
Information Sciences
Ain Shams University

Prof. Dr. El-Sayed A. El-Dahshan

Professor at Faculty of Computer and Information Technology
The Egyptian University for E-learning

Cairo, 2018

Acknowledgement

First of all, I humbly give my deepest thanks to God for giving me the opportunity and the strength to accomplish this work.

I would like to thank all the people who helped me to make this work possible, especially my supervision committee. I would like to give my deep appreciation and thanks my supervisor, **Prof. Dr. Abdel-Badeeh M. Salem** for the confidence given to me and his wisdom intelligence, and creative view. His supervision inspired and helped me to complete the researches and writing this thesis, he always gave me the precise advice at the precise moment throughout my PhD study.

Also, I would like to express my sincere gratitude to my co-supervisor **Prof. Dr. El-Sayed M. El- Horbaty**, for always motivating me for going further and further. His enthusiasm, dedication and impressive depth of knowledge have been a great inspiration to me. I learned from him much about the field beyond my thesis topic and I know that this will help me throughout my career. He patiently helped me through my explorations and spared time to discuss ideas with me. I credit most of my intellectual growth during this period to him.

I am most grateful to my co-supervisor **Prof. Dr. El-Sayed A. El-Dahshan**, for his support and guidance of this study. He provided invaluable suggestion and encouragement from the beginning of my research. I benefited numerous discussions through his shared ideas, views from the perspective of their fields of expertise, and helped me when I needed some advice in different matters.

I also thank to the dean of the faculty of computer and information sciences, staff members, and registration committee for their advice and supporting.

Last but not least, I owe special thanks to my parents, my children Shahd and Abdullah and my sisters and brother for their patience with me, and their unlimited support and encouragement to do well.

Abstract

Skin cancer can be considered as one of the most growing types and deadly in the world of cancer; the importance of these tumors is the malignant melanoma. It is one the growing threats in the developed world, which could lead to increasing mortality. The main danger of melanoma is its ability to grow in any part in the body by lymphatic and blood vessels, making it difficult to diagnose in its early stages. As such, mortality rates increase by the time the melanoma is diagnosed in its late stages. Therefore, early diagnosis is crucial for reducing mortality and morbidity. Early stage diagnostic of benign and malignant melanoma is a crucial problem of skin cancer.

Nowadays, medical decision support employs computer technology, which helps the dermatologist to recognize a benign from malignant melanoma. Such technology takes less time, and gives accurate diagnosis with reduced related errors.

The thesis is divided into two parts; the first part summarizes the survey on machine learning techniques for diagnostic sciences in medical imaging, and focuses on a literature review of the Computer Aided Diagnosis (CAD) system that implemented in identifying and diagnosing malignant melanoma of dermoscopy images with emphasis on computer-aided image analysis starting with image acquisition and pre-processing, and finishing with the malignant melanoma classification of dermoscopy images. The techniques employed in each step are explained, and their benefits and limitations are identified. Apart from that, performance of a number of classifiers specifically developed for the diagnosis of malignant melanoma is compared.

The second part is based on various methodologies for CAD system, which are proposed on the problem of malignant melanoma detection using machine learning and deep learning techniques from macroscopic and dermoscopic images. These methodologies are composed of four stages: image acquisition, pre-processing, feature extraction, classification, and evaluation.

Different data sets are used like: Med-Node, Dermatology Information System (DermIS), and DermQuest. Various techniques are implemented in preprocessing such as: morphological operators, adaptive median filter and contrast adjustment. The three proposed techniques for feature extraction include Discrete Wavelet Transform (DWT), Principle Component Analysis (PCA), and the texture feature. These features serve as the input to the various classification techniques such as: *K*-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), and Support Vector Machines (SVM), Neuro-Fuzzy, Decision Trees (DT), Naïve Bayes (NB), deep learning using Stacked Auto Encoders (SAEs). Different statistical tests are performed for analysis the macroscopic and dermoscopic images, and to verify and validate that the accuracy is true for comparing machine learning techniques. Also it is provided guarantee the reliability of study.

The experimental results show that the proposed methodologies are efficient, and achieving high classification accuracies in the range [75 % - 100 %] on macroscopic images, and achieving high classification accuracies in the range [90.0 % - 98.8 %] on dermoscopic images. We compared the obtained results with other techniques. The comparative results showed that the proposed CAD methodologies are more accurate than other techniques in this field of melanoma diagnosis.

Table of Contents

Acknowledgement	i
Abstract	ii
List of Tables	vii
List of Figures	ix
List of Abbreviations	xii
List of Symbols	xiv
List of Algorithms	XV
List of Publications	xvi
CHAPTER 1: Introduction	
1.1 Introduction	1
1.2 An Overview of Cancer Medical Informatics	2
1.3 Applied Medical Informatics	3
1.4 Motivation	8
1.5 Problem Definition	
1.6 Objectives	11
1.7 Contribution	12
1.8 Thesis Organization	13
CHAPTER 2: Machine Learning Techniques for Medical Imaging	
2.1 Introduction	14
2.2 An Overview of Medical Imaging	15
2.3 Survey of Machine Learning Techniques in Medical Imaging	
2.4 Summary	
CHAPTER 3: Background of Melanoma Skin Cancer	
3.1 The Human Skin	28
3.2 Malignant Melanoma	30
3.3 Review of CAD Systems for Malignant Melanoma Detection	33
3.4 Summary	45

CHAPTER 4: Analysis of Different Techniques Used in CAD System for Melanoma Diagnostic

4.1	Introduction	47
4.2	Image acquisition and Pre-processing	50
4.3	Features Extraction	56
	4.3.1 Texture Features	56
	4.3.2 Color Features	57
	4.3.3 Geometric features	58
	4.3.4 Discrete Wavelet Transform (DWT)	59
4.4	Classification	62
	4.4.1 K-Nearest Neighbour Algorithm (k_NN)	63
	4.4.2 Decision Trees (DT)	64
	4.4.3 Support Vector Machine (SVM)	65
	4.4.4 Artificial Neural Network (ANN)	67
	4.4.5 Self-Organizing Map (SOM)	68
	4.4.6 Neuro-Fuzzy	69
	4.4.7 Fuzzy C-Mean (FCM)	70
	4.4.8 Naïve Bayes (NB)	71
	4.4.9 Clustering	72
4.5	Summary	76
CHAI	PTER 5: Machine Learning Techniques For Macroscopic Image	S
5.1	Experiment of Hybrid DWT+PCA features with Machine Learning Techniques	77
5.2	Results and Discussion of Hybrid DWT+PCA features with Machine Learning Techniques	86
5.3	Experiments of Resampling by k-Fold Cross-Validation	91
5.4	Results and Discussion of Resampling by k-Fold Cross Validation	93
5.5	Experiment of Statistical Tests for Analysis the Macroscopic Images.	95
5.6	Results and Discussion of Statistical Tests for Analysis the Macroscopic Images	97
5.7	Experiment of Statistical Tests for Comparing Machine Learning Techniques	102
5.8	Results and Discussion of Statistical Tests for Comparing Machine Learning Techniques	106
5.9	Summary	110

	Based on Hybrid DWT and PCA Features	
6.1	Experiment of Hybrid DWT+PCA with SVM, k_NN, ANN on DermIS Data Set	113
6.2	Results and Discussion of Hybrid DWT+PCA with SVM, k_NN, ANN on DermIS Data Set	118
6.3	Experiment of Hybrid DWT+PCA with ANN, ANFIS and SVM on composite Data Sets	122
6.4	Results and Discussion of Hybrid DWT+PCA with ANN, ANFIS and SVM on composite Data Sets	130
6.5	Summary	137
СНАР	TER 7: Machine Learning Techniques For Dermoscopy Based on DWT and Texture Features	Images
7.1	Experiment Based on Deep Learning Using SAEs for Melanoma Diagnostic	139
7.2	Results and Discussion Based on Deep Learning Using SAEs for Melanoma Diagnostic	146
7.3	Experiment of Hybrid DWT+PCA and Texture features with Naive Bayes and Decision Tree for Melanoma Diagnostic	152
7.4	Results and Discussion of Hybrid DWT+PCA and Texture features wi	158
7.5	Experiment of Statistical Tests for Analysis the Dermoscopy Images	164
7.6	Results and Discussion of Statistical Tests Analysis on Dermoscopy Images	164
7.7	Experiment of Statistical Tests for Comparing Machine Learning Techniques on Dermoscopy Images	170
7.8	Results and Discussion of Statistical Tests for Comparing Machine Learning Techniques on Dermoscopy Images	171
7.9	Summary	173
СНАР	TER 8: Conclusions and Future Work	
8.1	Conclusions	177
8.2	Future Work	178
Ref	erences	180
AP	PENDIX	
Glo	ssary of Medical Terms	196

CHAPTER 6: Machine Learning Techniques For Dermoscopy Images

List of Tables

Table 2.1	Imaging devices for the diagnosis of skin cancer	18
Table 2.2	A survey on Decision Tree Technique	20
Table 2.3	A Survey on SVM Technique	22
Table 2.4	A survey on ANN Technique	24
Table 2.5	A survey on NB Technique	25
Table 3.1	Layers of the skin and its function	29
Table 3.2	Review of CAD System for Malignant Melanoma Detection	34
Table 3.3	able 3.3 Overview of the relationships commonly data set	
	dermoscopy images and the features for each color space	45
Table 4.1	Benefits and limitations of features extraction techniques	61
Table 4.2	Benefits and limitations of machine learning techniques	73
Table 5.1	Performance of Hybrid DWT+PCA features with machine	
	learning techniques	88
Table 5.2	Performance Comparison for Classification Hybrid DWT and	
	PCA features with ANN, SVM, k-NN	88
Table 5.3	Performance Comparison for Classification Hybrid DWT and	
	PCA with NB, DT	89
Table 5.4	Comparative Results of Different Studies	91
Table 5.5	Comparison of Resampling by 10-Fold Cross-Validation and	
	Hold Out	94
Table 5.6	Definition's Columns ANOVA Table	96
Table 5.7	Definition's Rows ANOVA Table	96
Table 5.8	The Output Arguments of Hypothesis t-Test Results	97
Table 5.9	The output results of the hypothesis t-test statistical tests	102
Table 5.10	a P-value in terms of a fixed level α test	103
Table 5.11	The results of Classifiers by using McNamara's test	104
Table 5.12	Comparison Accuracies of NB and k_NN Models using	
	McNemar test variations	108
Table 5.13	Comparison Accuracies of k_NN and DT Models using	
	repeated cross-validation t tests	110
Table 6.1	Performance of Hybrid DWT+PCA with SVM, k-NN and ANN	119

Table 6.2	Comparison of Classification Results for Hybrid DWT+PCA	
	with SVM, k-NN and ANN	120
Table 6.3	Comparative Results of Different Studies	121
Table 6.4	Results of Wavelet Accuracy with Different Number of Hidden	
	Neurons	132
Table 6.5	Results of Wavelet Accuracy with Different Number of Epochs	132
Table 6.6	Performance of Hybrid DWT+PCA with ANN, ANFIS and	
	SVM	133
Table 6.7	Comparison between ANN, ANFIS and SVM Results	133
Table 6.8	Comparative Results of Different Studies	135
Table 7.1	Results of Wavelet Accuracy with a Logistic Sigmoid Function	147
Table 7.2	Results of Wavelet Accuracy with a Linear Transfer Function	147
Table 7.3	Results of Texture Accuracy with a Linear Transfer Function	148
Table 7.4	Results of Texture Accuracy with a Logistic Sigmoid Function	148
Table 7.5	Performance of DWT and Texture with SAEs	149
Table 7.6	Comparison Between DWT and Texture with SAEs Results	150
Table 7.7	Comparative Results of Different Studies	151
Table 7.8	The performance for Hybrid DWT+PCA and Texture features	
	with NB and DT Techniques	159
Table 7.9	Performance comparisons for Classification Texture Features	
	with NB, DT	160
Table 7.10	Performance Comparison for Classification Hybrid DWT and	
	PCA with NB, DT	161
Table 7.11	Comparative Results of Different Studies	163
Table 7.12	The output results of the hypothesis t-test statistical tests	169
Table 7.13	Comparison Accuracies of machine learning using McNemar	
	tact variations	173

List of Figures

Figure 1.1	Diagram for Medical cancer informatics	
Figure 1.2	A standard general scheme of a CAD system for skin lesions	
Figure 2.1	Medical Imaging Modalities	
Figure 2.2	Image Classification Process	
Figure 2.3	2.3 An example of Dermoscope equipment	
Figure 2.4 Hyper plane of SVM		
Figure 2.5 A structure of the ANN		
Figure 3.1	Anatomy the layers of normal and abnormal melanocytes skin in different stages	
Figure 3.2	The ABCD Rule for early detection of melanoma	
Figure 4.1	General scheme of a CAD system for malignant melanoma diagnosis	
Figure 4.2	Various techniques in malignant melanoma diagnosis	
Figure 4.3	Images 1–8, and 9–15 show benign and malignant lesions,	
	respectively	
Figure 4.4	Overview most commonly data sets used malignant melanoma	
	diagnosis System	
Figure 4.5	Issues in border detection	
Figure 4.6	Overview of the most commonly used preprocessing techniques in	
	CAD Systems	
Figure 4.7	Image Decomposition (3 Level) using DWT	
Figure 4.8	Principle of SVM	
Figure 4.9	Feed forward neural network	
Figure 5.1	The Proposed Methodology of Hybrid DWT+PCA features with	
	Machine Learning Techniques	
Figure 5.2	Macroscopic image examples: (a) benign image; (b) melanoma	
	image	
Figure 5.3	a) Original Image b) Gray Image	
Figure 5.4	Filtered image	
Figure 5.5	The decomposed wavelet at level 1	
Figure 5.6	Confusion Matrix of ANN on macroscopic images	

Figure 5.7	ROC for each output class on macroscopic images	
Figure 5.8	The bar graph diagram displays a comparison between hybrid	
	DWT and PCA with Machine Learning Techniques	
Figure 5.9	ROC Curves for Hybrid DWT+PCA with k_NN, SVM, NB, and	
	DT Techniques	
Figure 5.10	The bar graph diagram displays Comparison of Resampling by	
	using 10-Fold CrossValidation and Hold Out	
Figure 5.11	Screenshot of ANOVA Table for Test (1)	
Figure 5.12	Screenshot of ANOVA Table for Test (2)	
Figure 5.13	Screenshot of ANOVA Table for Test (3)	
Figure 6.1	The Proposed Methodology of Hybrid DWT+PCA with SVM,	
	k_NN, ANN	
Figure 6.2	Images 1-3, and 4-6 show benign and malignant lesions,	
	respectively	
Figure 6.3	The processes of pre-processing on dermoscopy images a) original	
	image, b) Gray image, C) Filtred image, d) Image after hair	
	removal, f) Image after contrast using gamma value	
Figure 6.4	Feature extraction using 2D DWT a) Original image b)	
	decomposed by using wavelet at level 1	
Figure 6.5	Confusion Matrix of ANN	
Figure 6.6	Performance Results for Hybrid DWT+PCA with SVM, k-NN	
	and ANN	
Figure 6.7	The Proposed methodology of Hybrid DWT+PCA with ANN,	
	ANFIS and SVM	
Figure 6.8	Dermoscopy image examples: (a) melanoma image; (b) benign	
	image	
Figure 6.9	The processes of pre-processing a) original image, b) gray image,	
	C) image after hair removal	
Figure 6.10	The wavelet decomposition of image	
Figure 6.11	Feature extraction of image using DWT and PCA	
Figure 6.12	ANFIS System for melanoma diagnostic	
Figure 6.13	The bar graph diagram displays a comparison between ANN	
	ANFIS and SVM Results	

Figure 6.14	ROC for each output class	
Figure 7.1	The Proposed methodology Based on Deep Learning Using SAEs	
	for Melanoma Diagnostic	
Figure 7.2 Dermoscopy Image		
Figure 7.3	The processes of pre-processing a) original image, b) gray image, C) image after hair removal, d) filtered image, e) after contrast adjustment	
Figure 7.4	The wavelet decomposition of image	
Figure 7.5	Stacked Auto Encoder	
Figure 7.6	Confusion matrix for ANN	
Figure 7.7	The bar graph diagram displays a comparison between DWT and	
	Texture with SAEs results	
Figure 7.8	The Proposed Methodology of Hybrid DWT+PCA and Texture	
	features with Naive Bayes and Decision Tree for Melanoma	
	Diagnostic.	
Figure 7.9	An example of deromscopy image	
Figure 7.10	Resized and gray image	
Figure 7.11	After removal the hair	
Figure 7.12	Filtered image	
Figure 7.13	The bar graph diagram displays Texture features with NB and DT	
	Results	
Figure 7.14	The bar graph diagram displays a comparison between hybrid	
	DWT and PCA with NB and DT results	
Figure 7.15	ROC Curves for Hybrid DWT+PCA and Texture features with	
	NB and DT Classification	
Figure 7.16	Screenshot of ANOVA Table for Test (1)	
Figure 7.17	Screenshot of ANOVA Table for Test (2)	
Figure 7.18	Screenshot of ANOVA Table for Test (3)	

List of Abbreviations

ABCD rule (A: Asymmetry, B: Boundary, C: Colour and D:

Diameter of the lesion)

AC Accuracy

AHE Adaptive Histogram Equalization

ANN Artificial Neural Network

ANOVA Analysis Of Variance

AR Association rules

BNs Bayesian Networks

BPNs Back propagation network

CAD Computer Aided Diagnosis

CLAHE Contrast Limited Adaptive Histogram Equalization technique

CNNs Convolutional Neural Networks

CPN Counter Propagation Network

CSLM Confocal Scanning Laser Microscopy

CT Computed tomography

DBNs Deep Belief Networks

Deg-malig Degree of malignancy

DLNN Deep learning based Neural Networks

DR Digital radiography

DSS Decision support system

DT Decision Tree

DWT Discrete Wavelet Transform

EBPN Error Back Propagation Network

FCM Fuzzy C-means

FP-Tree Frequent pattern tree

FTA Fuzzy-T ARM

GLCM Gray Level Co-occurrence Matrix

HNB Hidden Naive Bayes

HSV Hue-Saturation-Value

IHP Independent Histogram Pursuit

kNN k-nearest neighbor

LMT Logistic Model Tree

LVQ The Learning vector quantization

MLP Multi-Layer Perceptron

MRI Magnetic resonance images

MSIM Multistage Illumination Modeling

NB Naïve Bayes

NCI National Cancer Institute

NFARM Novel Fuzzy Association Rule Mining

NOS Normalized Otsu's Segmentation

OCT Optical Coherence Tomography

PCA Principle Component Analysis

PNN Probabilistic neural network

RBF Radial Basis Function

RF Random Forest

RNNs Recurrent Neural Networks

ROC Receiver Operating Characteristic

SAEs Stacked Auto Encoders

SE Sensitivity

SLP Single Layer Perceptron

SMO Sequential Minimal Optimization

SOM Self-Organizing Map

SP Specificity

SVD Singular Value Decomposition

SVM Support Vector Machine

UMCG University Medical Center Groningen

UV Ultraviolet

WBCHIR Wavelet Based Color Histogram Image Retrieval

List of Symbols

Symbol	Meaning
P(C)	prior probability
$p(\mathbf{x} C)$	class likelihood
$P(C \mathbf{x})$	posterior probability
X	observation
$\mathbf{x} = (x1,, xn)$	a finite set of features
C	Confidence factor
X_i	sample
y _i	associated class label
$(C_1, C_2 \ldots, C_K)$	The data is partitioned into <i>K</i> clusters
TPR	true positive Rate
TNR	true negative Rate
FPR	false positive Rate
FNR	false negative Rate
df	Degrees of freedom of the test
sd	standard deviation
ci	Confidence interval vector
H_0	Null Hypothesis
H_a	Alternate Hypothesis
μ	mean value
P-value	a probability –value
α	significance level