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Abstract

Skin cancer can be considered as one of the most growing types and
deadly in the world of cancer; the importance of these tumors is the malignant
melanoma. It is one the growing threats in the developed world, which could lead
to increasing mortality. The main danger of melanoma is its ability to grow in
any part in the body by lymphatic and blood vessels, making it difficult to
diagnose in its early stages. As such, mortality rates increase by the time the
melanoma is diagnosed in its late stages. Therefore, early diagnosis is crucial for
reducing mortality and morbidity. Early stage diagnostic of benign and malignant
melanoma is a crucial problem of skin cancer.

Nowadays, medical decision support employs computer technology,
which helps the dermatologist to recognize a benign from malignant melanoma.
Such technology takes less time, and gives accurate diagnosis with reduced

related errors.

The thesis is divided into two parts; the first part summarizes the survey
on machine learning techniques for diagnostic sciences in medical imaging, and
focuses on a literature review of the Computer Aided Diagnosis (CAD) system
that implemented in identifying and diagnosing malignant melanoma of
dermoscopy images with emphasis on computer-aided image analysis starting
with image acquisition and pre-processing, and finishing with the malignant
melanoma classification of dermoscopy images. The techniques employed in
each step are explained, and their benefits and limitations are identified. Apart
from that, performance of a number of classifiers specifically developed for the

diagnosis of malignant melanoma is compared.

The second part is based on various methodologies for CAD system,
which are proposed on the problem of malignant melanoma detection using
machine learning and deep learning techniques from macroscopic and
dermoscopic images. These methodologies are composed of four stages: image

acquisition, pre-processing, feature extraction, classification, and evaluation.



Different data sets are used like: Med-Node, Dermatology Information
System (DermlS), and DermQuest. Various techniques are implemented in pre-
processing such as: morphological operators, adaptive median filter and contrast
adjustment. The three proposed techniques for feature extraction include Discrete
Wavelet Transform (DWT), Principle Component Analysis (PCA), and the
texture feature. These features serve as the input to the various classification
techniques such as: K-Nearest Neighbor (KNN), Artificial Neural Networks
(ANN), and Support Vector Machines (SVM), Neuro-Fuzzy, Decision Trees
(DT), Naive Bayes (NB), deep learning using Stacked Auto Encoders (SAES).
Different statistical tests are performed for analysis the macroscopic and
dermoscopic images, and to verify and validate that the accuracy is true for
comparing machine learning techniques. Also it is provided guarantee the

reliability of study.

The experimental results show that the proposed methodologies are
efficient, and achieving high classification accuracies in the range [75 % - 100
%] on macroscopic images, and achieving high classification accuracies in the
range [90.0 % - 98.8 %] on dermoscopic images. We compared the obtained
results with other techniques. The comparative results showed that the proposed
CAD methodologies are more accurate than other techniques in this field of

melanoma diagnosis.
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