

التحضير والتطوير بالإشعاع لمواد بوليمرية تطبق في عمليات تعبئة الغذاء ونشاطها وتحللها الحيوى

رسالة مقدمة من

ندى ربيع احمد ناصف (ماجستيرفي الكيمياء 2015)

للحصول على درجة الدكتوراة في فلسفة العلوم (الكيمياء)

لجنة الإشراف:

أ.د / صبرنال حنفى الحامولى أستاذ كيمياء البوليمرات المتفرغ كلية العلوم جامعة المنوفية أ.د / ماهر عبدالعزيز الحشاش أستاذ متفرغ- قسم الكيمياء- كلية العلوم-جامعة عين شمس

أ.م.د / أمانى بدر الدين عبد العزيز أستاذ مساعد قسم الميكروبيولوجى -المركز القومي لبحوث وتكنولوجيا الإشعاع - هيئة الطاقة الذرية أ.د / نبيله أحمد مزيد أستاذ كيمياء الإشعاع- رئيس قسم كيمياء البوليمرات- المركز القومي لبحوث وتكنولوجيا الإشعاع -هيئة الطاقة الذرية

أ.م. د/سامح أحمد رزق أستاذ مساعد قسم الكيمياء - كلية العلوم- جامعه عين شمس

Ain shams University Faculty of Science Chemistry Department

Radiation Synthesis And Modification Of Polymeric Material Applied In Food Packaging And Their Bioactivity And Biodegradation

Submitted to
Chemistry Department, Faculty Of Science Ain Shams
University
For The Degree Of Ph.D. Of Science In Chemistry
By

Nada Rabi Ahmad Nasef

(M.SC. CHEMISTRY)
Master In Chemistry, Manoufia University, 2015

Board Of Scientific Supervisors

Prof. Dr. / Maher A. El hashish
Prof. of Chemistry Department Faculty
of Science Ain Shams University

Prof. Dr. / Nabila Ahmed Maziad
Prof. of Department of Polymer
Chemistry, National Centre for Radiation
Research and Technology, Atomic
Energy Authority, Egypt

*Prof. Dr. / Sabrnal H. El-Hamouly*Prof. of Emeritus Polymer Chemistry,
Manoufia University, Faculty of Science

Assist. Prof. Dr. /Amany Badr El-deen Abd El-Aziz

Assist. Prof. of Microbiology. Microbiology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Egypt

Assist. Prof. Dr. / Sameh Ahmad Rizk
Assist. Prof. of Organic Chemistry Department,
Faculty of Science, Ain Shams University
2018

First of all, the main thanks to "Allah" to whom I always pray and under the light of his "HOLLY FACE" I live and go.

I would like to offer my deep thanks to **Prof. Dr. Maher A. Elhashash**; Professor of Organic Chemistry, Faculty of Science, Chemistry Department, Ain shams University For his continouse guidence, interest, valuable discussion, supervision and advices throughout this work.

I am grateful to **Prof. Dr. Sabrnal Hanfy El-Hamouly;** Prof of Polymer Chemistry, Manoufia University, Faculty of Science, Chemistry Department. For his great efforts, and continuous Encouragement, supervision and help to have this work done.

Also, I would like to offer my deep thanks to **Prof. Dr. Nabila Ahmad Maziad;** Prof. Of Radiation Chemistry, National Center for Radiation Research and Technology For her suggesting the topic of this work, continues guidance, interest, valuable discussion, encouragement, supervision and advices throughout this work.

I would like to express my sincere gratitude and respect to Assist. prof. Dr. Amany Badr El-deen Abd El- Aziz; Prof. of microbiological Department, in National Center for Radiation Research & Technology, for her masterly teaching, valuable advices, honest assistance. Kind supervision and continuous encouragement.

Also, I am grateful to *Dr. Sameh A Rizk; Assist. prof. Dr. of Organic Chemistry Department, Faculty of Science, Ain Shams University for priceless help and support.*

I wish to express my sincere gratitude to all the members and colleagues in the National Center for Radiation Research & Technology, for their efforts, help and friendship throughout my research.

I wish to express my sincere gratitude to members of Polymer Chemistry Department and microbiological Department in National Center for Radiation Research and Technology, Atomic Energy Authority for the various opportunities that have helped to make this work, honest assistance and friendship throughout my research.

This Work Is Dedicate To
My Parents,
and
My Family
Without
Their Support, Endless Help and
Continues Encouragement
All the Time I Could Never Finish This Work.
I Would Like To Express the Deep Thanks
To
My Lovely Daughters
Rahaf & Zeina.

Comtemis

Contents Pag		
List of abbreviations.		
List of tables.		
List of figu	ures.	\mathbf{V}
Aim of the	e work.	X
Abstract.		XII
1. Introd	uction	1
1.1.	Interaction of ionizing radiation with	1
	polymeric materials.	
1.1.1.	Sources of ionizing radiation.	1
I.1.2.	Interaction of radiation with polymeric	1
	materials.	
I.1.3.	Radiation processing of polymers.	3
1.2.	Food packaging.	4
1.2.1.	Polymers in food packaging.	6
1.2.2.	Ideal properties of the film forming polymers	. 7
1.2.3.	Shelf life in food packaging.	7
1.2.4.	Key properties of polymeric materials used in	1 7
	packaging.	
1.2.5.	Barrier properties of polymeric materials used	8
	in packaging.	
1.2.6.	Mechanical properties of polymeric	8
	materials used in packaging.	
1.3.	Biodegradable plastics.	9
1.3.1.	Factors affecting polymer degradation.	12
1.3.2.	Mechanisms and methods of biodegradation.	13
1.3.2.1.	Mechanisms of biodegradation.	13

1.3.2. 2.	Methods for blodegradation.	14
1.3.3.		
	materials and products.	
1.3.4.	Functions of packaging.	15
1.3.5.	Types of packaging materials.	16
1.3.5.1.	Flexible films.	16
1.3.5.2.	Describe of active packaging.	16
1.4.	Poly vinyl alcohol.	17
1.5.	Starch.	18
1.6.	Poly lactic acid.	19
1.7.	Natural rubber.	21
1.8.	Plasticizers.	22
1.9.	Polymer blends.	23
1.9.1.	(PVA - starch) blends.	24
1.9.2.	Blending poly lactic acid.	25
1.9.3.	Natural rubber blends.	26
1.10.	Antimicrobial activities.	27
1.11.	Application of biodegradable plastics.	28
2. Liter	ature Review	33
2.1.	Polyvinyl alcohol.	33
2.2.	Starch.	34
2.3.	Poly lactic acid.	40
2.4.	Natural rubber.	43
2.5.	Blends of polymers.	46
2.6.	Biodegradation of polymer plastics.	63
2.7.	Plastic polymers in food packaging.	69
3. Mate	rials & Methods	79
3.1.	Materials.	79
3.2.	Experimental techniques.	81
3.2.1.	Gamma radiation treatment.	81
3.2.2.	Preparation of blends poly vinyl alcohol,	81
	starch and glycerol.	

3.2.3.	Preparation of blends by addition of PLA, NR	82
	and glycerol to mixture (PVA- starch).	
3.3.	Measurements and analysis.	82
3.3.1.	Gel fraction.	82
3.3.2.	Swelling measurements.	83
3.3.3.	Scanning electron microscopy (SEM).	83
3.3.4.	Mechanical testing.	84
3.3.5.	Fourier transforms infrared measurements (FTIR).	84
3.3.6.	Thermogravimetric analysis (TGA).	84
3.3.7.	Differential scanning calorimetry (DSC).	85
3.3.8.	Water vapor permeability.	85
3.3.9.	Oxygen and carbon dioxide permeability.	85
3.3.10.	Soil samples collections.	86
3.4.	Methods used for isolation of microorganisms	86
	from the soil samples.	
3.4.1.	Enrichment method.	86
3.4.2.	Isolation of microorganisms by serial	87
	dilution	
	method.	
3.5.	Isolation of degrading microorganisms.	87
3.5.1.	Screening for microbial degradation of tested	87
	polymeric materials on agar plates.	
3.5.2.	Isolation of starch degrading microorganisms	88
	(starch iodine test).	
3.5.3.	Isolation of glycerol degrading	88
	microorganisms.	
3.5.4.	Isolation of (PVA) degrading	89
	microorganisms.	
3.5.5.	Isolation of (PLA) degrading	88
	microorganisms.	
3.5.6.	Isolation of natural rubber degrading	89

	microorganisms.	
3.6.	Identification of microbial isolates.	90
3.7.	Screening for microbial degradation of tested	90
	blends in shaking flasks.	
3.7.1.	Shake flask culture conditions.	90
3.8.	Soil burial methods.	91
3.9.	Application of biodegradable films.	91
4. Result	s & Discussion	92
4.1.	Radiation synthesis and modification of	92
	polymeric material applied in food packaging	
	and their and biodegradation.	
4.1.1.	Study the effect of different concentrations	92
	ratio of (PVA- starch) w/w% blends onto the	
	gel fraction percent.	
4.1.2.	Effect of different concentration ratio of	93
	(PVA- starch) blends onto the swelling	
	percent.	
4.1.3.	Study the effect of tensile strength and	95
	elongation at break onto different	
	concentration ratio of (PVA- starch) blends.	
4.1.4.	Study the effect of different irradiation doses	97
	onto the gel fraction percent of prepared	
	(PVA- starch) copolymer blends and addition	
	of (PLA)	
	and (NR) onto the blends.	
4.1.5.	Study the effect of irradiation doses onto the	99
	swelling percent of prepared copolymers	
	(PVA- starch), (PVA- starch- PLA), and	
116	(PVA- starch- NR) blends.	104
4.1.6.	Study the effect of different types of	10 1
	plasticizers poly ethylene oxide, polyethylene	
	glycol and glycerol on the tensile strength and	

	starch) (90-10) w/w%.	
4. 1.7.	Study the effect of glycerol plasticizer concentration on the tensile strength and	103
	elongation at break for prepared blends.	
4. 1.8.	Study the effect of glycerol concentration	107
	onto the swelling percent of different	
	copolymer blends.	
4.1.9.	The kinetic study of the swelling process for	108
	different copolymers blends at different	
	time.	
4.2.	Thermogravimetric analysis (TGA).	111
4.2.1.	Thermogravimetric analysis for (PVA-	111
	starch) and Plasticized (PVA- starch-	
	glycerol) blends.	
4.2.2.	Thermogravimetric analysis of (PVA-	115
	starch- PLA) and Plasticized (PVA- starch-	
	PLA- glycerol) blends.	
4.2.3.	Thermogravimetric analysis of (PVA-	118
	starch-NR) and (PVA- starch- NR- glycerol)	
	blends.	
4.3.	Differential scanning calorimetry (DSC) for	121
	blends (PVA- starch – glycerol), (PVA-	
	starch- PLA- glycerol) and (PVA- starch-	
	NR- glycerol).	
4.4.	The permeability for prepared blends (PVA-	124
	starch- glycerol) and (PVA-starch-PLA-	
	glycerol).	4.0
4.4.1.	Water vapor permeability (WVP).	124
4.4.2.	Permeability of oxygen and carbon dioxide gases.	126
4.5.	Fourier Transform Infrared Spectroscopy	130

	(FTIR).	
4.5.1.	FTIR spectra of starch powder, (PVA) and	130
	glycerol.	
4.5.2.	FTIR spectra of blends for (PVA- starch)	132
	and (PVA- starch- glycerol) blends.	
4.5.3.	FTIR spectra for (PLA), (PVA- starch-	134
	PLA) and (PVA- starch- PLA- glycerol)	
	blends.	
4.5.4.	FTIR spectra of (NR) pure, (PVA- starch-	136
	NR) and (PVA- starch- NR- glycerol)	
	blends.	
4.6.	Microbial Population.	138
4.6.1.	Isolation of polymers degrading	139
	microorganisms.	
4.6.2.	Microbial degradation of polymeric	139
	materials	
4.6.3.	Degradation of (PVA- starch), and (PVA-	142
	starch- glycerol) blends by bacteria and	
	actinomycetes in shaking flasks.	
4.6.4.	Scanning electron microscopy (SEM) for	14 4
	(PVA- starch- glycerol) blends degradation	
	by bacteria and actinomycetes.	
4.6.5.	Fungal degradation of (PVA- starch), and	146
	(PVA- starch- glycerol) blends in shaking	
	flasks.	
4.6.6.	Fungal degradation of (PVA- starch – PLA-	148
	glycerol) blends in shaking flasks.	
4.6.7.	Scanning electron microscopy for (PVA-	149
	starch- PLA- glycerol) blends by	
	Aspergillus niger.	
4.6.8.	Fungal degradation of blends (PVA- starch	151
	–NR- glycerol) in shaking flasks.	

4.6.9.	Soil burial method for (PVA- starch- NR-	152
	glycerol) blends.	
4.6.10.	Confirmation of (PVA- starch- NR -	156
	glycerol) blends degradation by scanning	
	electron microscopy (SEM).	
4.7.	Application of biodegradable film (PVA-	158
	starch- PLA- glycerol) on food packaging.	
4.7.1.	Fruits in packaging by biodegradable film	159
	(PVA- starch-PLA- glycerol).	
4.7.2.	Vegetables tomatoes and bell pepper in	164
	packaging by biodegradable film (PVA-	
	starch-PLA- glycerol).	
5. Summa	ry	168
5.1	Conclusion	177
6. Referen	ices	178
7.	Published paper	195
8. Arabic summary		

List of abbreviations

Abbreviation	Name
(NH ₄) ₂ SO ₄	Ammonium sulfate
σ	Bending
CO ₂	Carbon dioxide
cm	Centimeter
°C	Degrees celsius
DSC	Differential scanning calorimetry
K ₂ HPO ₄	Di-potassium hydrogen phosphate
K ₂ HPO ₄ . 3H ₂ O	Di-potassium hydrogen phosphate tri-
K ₂ 111 O ₄ , 311 ₂ O	hydrate
FeSO ₄ . 7H ₂ O	Ferrous sulfate heptahydrate
FTIR	Fourier transfer infrared spectra
γ	Gamma rays
g%	Gel fraction
G	Glycerol
gm	Gram meter
gm/l	Gram per liter
h	Hour
HCl	Hydrogen chloride
ОН	Hydroxyl group
I_2	Iodine

List of abbreviation

kGy	Kilo grey
kJ/mol	Kilo joule per mol
LA	Lactic acid
MgSO ₄ . 7H ₂ O	Magnesium sulfate heptahydrate
MPa	Mega pascal
μl	Microliter
ml	Milliliter
mm	Millimeter
MSM	Minimal salt medium
(NCRRT)	National Center For Radiation Research and
(IVOINI)	Technology
NR	Natural rubber
N_2	Nitrogen
N	Normal
O_2	Oxygen
%	Percent
PLST	Plasticizer
PLA	Poly lactic acid
PVA	Poly vinyl alcohol
KBr	Potassium bromide
KI	Potassium iodide
KH ₂ PO ₄	Potassium phosphate monobasic
rpm	Revolutions per minute
SEM	Scanning electron microscope

List of abbreviation

NaCl	Sodium chloride
υ	Stretching
S%	Swelling percent
TS	Tensile strength
TGA	Thermogravimetric analysis
v/v	Volume/Volume
w/v	Weight/Volume
w/w	Weight/Weight

ISSN Online: 2327-509X ISSN Print: 2327-5081

Characterization of Radiation Prepared Copolymer and Studies of Their Biodegradability

Nabila Ahmed Maziad¹, Amany Badr El-Deen Abd El-Aziz², Sabrnal El-Hamouly³, Maher Abd El-Aziz Mahmoud El-Hashish⁴, Sameh A. Rizk⁴, Nada Rabie Nasef^{4*}

How to cite this paper: Author 1, Author 2 and Author 3 (2018) Paper Title. *Journal of Biosciences and Medicines*, **6**, *-*. https://doi.org/10.4236/***.2018.*****

Received: **** **, ***
Accepted: **** **, ***
Published: **** **, ***

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Blends of biodegradable copolymer based on starch, poly lactic acid (PLA), poly vinyl alcohol (PVA) and natural rubber (NR) have been prepared. Gamma radiation induced synthesis and modification of polymer hydrogel was studied. The polymer blends have been chemically surface modified by glycerol. The modified polymer blends have been investigated for swelling ratio, tensile strength and 9 scanning electron microscopy. The swelling ratio of polymer blends increased significantly after surface modification with glycerol. The swelling of polymer was decreased as a function of (NR) content in polymer blends. The gel fraction (PVA-starch-PLA) and (PVA-starch-NR) blends increased by increasing the radiation doses (kGy) to reach the maximum amount of (~99%) and (~88.2%), respectively. Addition of 2.5% (PLA) led to greater increase of the swelling ratio than 10% (NR) to blends and the maximum swelling was found at dose (5 kGy). At concentration of glycerol (5.0% w/w), tensile strength decreased and elongation at break % increased. The polymers degrading microorganisms were isolated from soil samples. The degradation ability of the microbial isolates for each polymeric material was tested on agar plates. Among these isolates, the most efficient degrader isolates for prepared blends in MSM shaking flasks were selected and the degradation was confirmed by scanning electron microscopy.

Keywords

Radiation, Biodegradation, (NR), (PLA), Renewable Resources, Mechanical Properties, Scanning Electron Microscopy

¹Department of Polymer Chemistry, National Centre for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Egypt

²Microbiology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Egypt

³Department Polymer Chemistry, Faculty of Science, Manoufia University, Al Minufya, Egypt

⁴Department Organic Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt Email: *nadanasef95@gmail.com