TRANSFER OF PESTICIDE RESIDUES TO MICE OFFSPRING THROUGH PRENATAL AND LACTATION EXPOSURE

By

MARWA FAROUK AHMED MOHAMED GAD

B.Sc. Agric. Sci. (Pesticide Chemistry), Alex., University (2003) M.Sc. Agric. Sci. (Pesticides), Cairo University (2011)

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

in Agricultural Sciences (Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

TRANSFER OF PESTICIDE RESIDUES TO MICE OFFSPRING THROUGH PRENATAL AND LACTATION EXPOSURE

By

MARWA FAROUK AHMED MOHAMED GAD

B.Sc. Agric. Sci. (Pesticide Chemistry), Alexandria University, 2003M.Sc. Agric. Sci. (Pesticide Chemistry), Cairo University, 2011

This Thesis for Ph.D. degree has bee	n approved by:
Dr. Mounir Daoud Abd-Allah	
Prof. Emeritus of Pesticides, Facult	ty of Agriculture, Cairo University.
Dr. Kadry Weshahy Mahmoud	•••••
Prof. Emeritus of Pesticide Cher	nistry and Toxicology, Faculty of
Agriculture, Ain Shams University	ý
Dr. Khaled Abdel Aziz Mohamed	
Prof. of Pesticide Chemistry and	Γoxicology, Faculty of Agriculture,
Ain Shams University.	
Dr. Mohamed Ibrahim Abdel-Mage	ed
Prof. Emeritus of Pesticide Cher	nistry and Toxicology, Faculty of
Agriculture, Ain Shams University	y.

Date of Examination: / / 2018

TRANSFER OF PESTICIDE RESIDUES TO MICE OFFSPRING THROUGH PRENATAL AND LACTATION EXPOSURE

By

MARWA FAROUK AHMED MOHAMED GAD

B.Sc. Agric. Sci. (Pesticide Chemistry), Alex., University (2003) M.Sc. Agric. Sci. (Pesticides), Cairo University (2011)

Under the supervision of:

Dr. Mohamed Ibrahim Abdel-Mageed

Prof. Emeritus of Pesticide Chemistry and Toxicology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Khaled Abdel Aziz Mohamed

Prof. of Pesticide Chemistry and Toxicology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Sameeh Abdel Kader Mansour

Researcher Prof. Emeritus of Pesticide Chemistry and Environmental Toxicology, Pesticide Chemistry Department, National Research Centre, Dokki, Cairo, Egypt

ABSTRACT

Marwa Farouk Ahmed Mohamed Gad. "Transfer of Pesticide Residues to Mice Offspring through Prenatal and Lactation Exposure". Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2018

This study evaluates toxicity of three pesticides [atrazine (A), chlorpyrifos (C) and endosulfan (E)], and tertiary mixture (ACE) which were mixed in the rodent diet at their respective "Acceptable Daily Intake, ADI' (e.g., 31.0, 44.0 and 30.0 mg kg⁻¹/bw/day, respectively), in addition to oral administration of vitamin E (α-tocopherol; 100 ul/ mouse). The experimental protocol included treatments during gestation and lactation periods separately. Either during gestation or lactation, the mouse dams were received one of the following treatments: (a) diet free of pesticides; (b) diet enriched with one of the tested pesticides (c) diet free of pesticides + oral vitamin E; and (d) diet enriched with one of the tested pesticides + oral vitamin E. Drinking water was allowed ad libitum up to 42 days. After the weaning, pups and dams were killed and selected organs and blood samples were collected for analyses. Compared with the control results either in dams or their pups, the tested pesticides induced high elevation in AST, ALT, ALP, urea and MDA and high decline in BuChE, SOD and CAT. Furthermore, the tested pesticides caused histopathological damage in the internal organs (e.g., liver, kidney, ovary and testis). The ameliorative effect of vitamin E, based on estimating the "Amelioration Index; AI" revealed the powerful effect of this vitamin in alleviating the oxidative stress exerted by the tested pesticides. The findings of this study may support the need to further investigating the adverse effects of exposure to low doses of commonly used pesticides, especially during pregnancy and breast-feeding as well as effects on newborn child.

Keywords: Atrazine; Chlorpyrifos; Endosulfan; Pesticide Mixture; Vitamine E; Pregnant Mice; Lactating Mice; Offspring; Oxidative Stress

ACKNOWLEDGEMENT

All praises and thanks are due to **ALLAH**, who blessed me with kind professors and colleagues, and gave me the support to complete this thesis.

First of all, i have to record my deep appreciation to late Professor **Dr. Zidan H. Zidan**, Professor of Pesticide Chemistry and Toxicology, Faculty of Agriculture, Ain-Shams University, who shared preparation of the protocol of this thesis. I dedicate the results of this investigation to his spirit.

I am highly grateful and indebted to **Dr. Mohamed I. Abdel-Mageed,** Professor of Pesticide Chemistry and Toxicology, Faculty of Agriculture, Ain-Shams University, and **Dr. Sameeh A. Mansour**, Professor of Pesticides and Environmental Toxicology, National Research Centre, for their kind supervision, extreme cooperation, valuable guidance and continuous encouragement throughout the work of this thesis.

I would like to express my sincere appreciation to **Dr. Khaled A. Mohamed,** Professor of Pesticide Chemistry and Toxicology,, Faculty of Agriculture, Ain-Shams University, for his valuable guidance, encouragement and patience with me throughout editing, reviewing of this thesis.

I would like to express my gratitude to **Dr. Laurence Gamet-Pyrastre**, Professor of Food Science and Technology, TOXALIM, INRA/INP/UPS Research Centre in Food Toxicology, Toulouse, France, for sharing the protocol of this study, and introduced facilities and requirements for conducting the experimental work of animals in her institute.

Thanks are also due to **Dr. Doha A. Mohamed**, Professor of Food Science & Nutrition, National Research Centre, for supervising the biochemical analyses and reviewing the results.

Thanks are dedicated to the National Research Centre, who supported the work of this thesis and to the stuff member of the Pesticide Chemistry Department for their continuous encouragement.

I cannot disclose this acknowledgment without thanking of my family for their patience, moral support and continuous encouragement.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Adverse effects of exposure to atrazine	6
2.2. Adverse effects of exposure to chlorpyrifos	17
2.3. Adverse effects of exposure to endosulfan	27
2.4. Adverse effects of exposure to mixture	32
2.5. Protective effect of vitamin E	39
3. MATERIALS AND METHODS	48
3.1. Chemicals	48
3.2. Preparation of pesticide enriched feed	50
3.3. Animals	51
3.4. Experimental groups	52
3.5. Blood and body organs	55
3.6. Biochemical analyses	55
3.7. Histopathological studies	56
3.8. Detection of pesticide residues in mice liver	56
3.9. Statistics analysis	58
4. RESULTS AND DISCUSSION	59
4.1. Atrazin	59
4.1.1. Body and organs weights	59
4.2. Chlorpyrifos	64
4.2.1. Body and organs	64
4.3. Endosulfan	69
4.3.1. Body and organs weights from hibiscus and black mulberry	69
4.4. Mixture	74
4.4.1 Body and organs	75

	Page
4.5. Biochemical alterations due to the tested insecticides	80
4.5.1. Aspartate amino transferase (AST)	80
4.5.2. Alanine amino transferase (ALT)	84
4.5.3. Alkaline phosphatase (ALP)	89
4.5.4. Buteryle Choline Esterase (BuChE)	92
4.5.5. Urea (mg/dl)	97
4.5.6 Malondialdehyde (MDA nmol/g tissue)	101
4.5.7. Super Oxide Dismutase (SOD u/g tissue)	105
4.5.8. Catalase (CAT in serum μmol/min/ml)	109
4.6. Assesment of antioxidative stress of the tested pestecticides and the	
ameliorative effect of vitamine E	115
4.6.1. Atrazine	115
4.6.2. Chlorpyrifos	118
4.6.3. Endosulfan	121
4.6.4. Mixture	124
4.7. Histopathological studies on the tested pesticides	127
4.7.1. Histological effect of atrazine	129
4.7.2. Histological effect of chlorpyrifos	134
4.7.3. Histological effect of endosulfan	139
4.7.4. Histological effect of mixture	144
4.8. Determination of pesticide residues in liver tissues	148
4.9. The thesis in a glance	150
4.9.1. Atrazine	152
4.9.2. Chlorpyrifos	152
4.9.3. Endosulfan	153
4.9.4. Mixture	153
5. SUMMARY AND CONCLUSION	156
6. REFERENCES	160
ANNEX	187
7. ARABIC SUMMARY	

LIST OF TABLE

Table No.	
Table 1.	Pesticides used in the present study
Table 2.	Experimental groups, abbreviations (symbols) and system of dosing used throughout the study
Table 3.	Experimental groups, abbreviations (symbols) and system of dosing used throughout the study
Table 4.	Final body and organ weights of mouse dams and their pups treated with the atrazine, with and without supplementation of vit E, during gestation periods
Table 5.	Relative organ weights of mouse dams and their pups treated with atrazine with and without Supplementation of vit E, during gestation periods
Table 6	Body and organ weights of mouse dams and their pups treated with atrazine, with and without supplementation of vit E, during lactation periods
Table 7.	.Relative body and organ weights of mouse dams and their pups treated with atrazine, with and without Supplementation of vit E, during lactation periods
Table 8.	.Body and organ weights of mouse dams and their pups treated with chlorpyrifos, with and without supplementation of vit E, during gestation periods
Table 9.	Relative Body and organ weights of mouse dams and their pups treated with chlorprifos with and without supplementation of vit E, during gestation periods
Table 10.	Body and organ weights of mouse dams and their pups treated with chlopyrifos, with and without supplementation of vit E, during lactation periods
Table 11.	Relative Body and organ weights of mouse dams and their pups treated with chloropyrifos with and without supplementation of vit E during lactation periods
Table 12.	Body and organ weights of mouse dams and their pups treated with the endosulfan, with and without supplementation of vit E, during gestation periods
Table 13.	Relative Body and organ weights of mouse dams and

Table No.		Page
	their pups treated with endosulfan, with and without supplementation of vit E, during gestation periods	
Table 14	Body and organ weights of mouse dams and their pups treated with Endosulfan, with and without supplementation of vit E, during lactation periods	72
Table 15.	Relative Body and organ weights of mouse dams and their pups treated with endosulfan with and without supplementation of vit E during lactation periods	73
Table 16.	Final body and organ weights of mouse dams and their pups treated with the mixture, with and without supplementation of vit E, during gestation periods	76
Table 17.	Relative organ weights of mouse dams and their pups treated with mixture with and without supplementation of vit E, during gestation periods.	77
Table 18.	Body and organ weights of mouse dams and their pups treated with mixture, with and without supplementation of vit E, during lactation periods	78
Table 19.	Relative body and organ weights of mouse dams and their pups treated with mixture ,with and without Supplementation of vit E ,during lactation periods	79
Table 20.	Activity of aspartate amino trasferase (AST) in serum of mouse dams and their pups following exposure during gestation to atrazine (ATZ), chlorpyrifos (CPF), endosulfan(END) and their mixture (MIX), with and without administration of vitamin E (V.E.).	81
Table 21.	Activity of aspartate amino trasferase (AST) in serum of mouse dams and their pups following exposure during lactation to atrazine (ATZ), chlorpyrifos (CPF), endosulfan(END) and their mixture (MIX), with and without administration of vitamin E (V.E.).	83

Table No.		Page
Table 22.	Activity of alanine amino transferase (ALT) in serum of mouse dams and their pups following exposure during gestation to atrazine, chlorpyrifos, endosulfan and their mixture, with and without administration of	
Table 23.	vitamin E	85
Tuble 20.	of mouse dams and their pups following exposure during lactation to atrazine, chlorpyrifos, endosulfan and their mixture, with and without administration of vitamin E.	87
Table 24.		07
Table 25.	mixture, with and without administration of vitamin E Activity of alkaline phosphatase (ALP) in serum of mouse dams and their pups following exposure during lastetion to straging abloraging and space.	89
Table 26.	lactation to atrazine, chlorpyrifos, endosulfan and their mixture, with and without administration of vitamin E Activity of buteryle Choline Esterase (BuChE) in serum of mouse dams and their pups following exposure during gestation to atrazine, chlorpyrifos,	91
Table 27.	serum of mouse dams and their pups following exposure during lactation to atrazine, chlorpyrifos,	93
Table 28.	endosulfan and their mixture, with and without administration of vitamin E. Concentration of urea (mg/dl) in serum of mouse dams and their pups following exposure during	95

Table No.		Page
	gestation to atrazine, chlorpyrifos, endosulfan and their	
	mixture, with and without administration of vitamin E	98
Table 29.	Concentration of urea (mg/dl) in serum of mouse	
	dams and their pups following exposure during	
	lactation to atrazine, chlorpyrifos, endosulfan and their	
	mixture, with and without administration of vitamin E	100
Table 30.	Activity of malondialdehyde (MDA nmol/g tissue) in	
	serum of mouse dams and their pups following	
	exposure during gestation to atrazine, chlorpyrifos,	
	endosulfan and their mixture, with and without	
	administration of vitamin E.	102
Table 31.	Activity of malondialdehyde (MDA nmol/g tissue) in	
	serum of mouse dams and their pups following	
	exposure during lactation to atrazine, chlorpyrifos,	
	endosulfan and their mixture, with and without	
	administration of vitamin E.	104
Table 32.	Activity of super Oxide dismutase (SOD u/g tissue)	
	in tissue of mouse dams and their pups following	
	exposure during gestation to atrazine, chlorpyrifos,	
	endosulfan and their mixture, with and without	406
T. 11. 22	administration of vitamin E.	106
Table 33.	Activity of super Oxide dismutase (SOD u/g tissue)	
	in tissue of mouse dams and their pups following	
	exposure during lactation to atrazine, chlorpyrifos,	
	endosulfan and their mixture, with and without administration of vitamin E.	108
Table 34.	Activity of catalase (CAT µmol/min/ml) in serum of	100
Table 34.	mouse dams and their pups following exposure during	
	gestation to atrazine, chlorpyrifos, endosulfan and their	
	mixture, with and without administration of vitamin E	110
Table 35.	Activity of catalase (CAT µmol/min/ml) in serum of	113
	or common (orangement) in solution	-10

Table No.		Page
Table 36.	mouse dams and their pups following exposure during lactation to atrazine, chlorpyrifos, endosulfan and their mixture, with and without administration of vitamin E Assessment of oxidative stress of the pesticide atrazine and the ameliorative effect of vitamin E based on measured biochemical parameters from gestation	
Table 37.	Assessment of oxidative stress of the pesticide atrazine and the ameliorative effect of vitamin E based on measured biochemical parameters from lactation	116
Table 38.	experimental results. Assessment of oxidative stress of the pesticide chlorpyrifos and the ameliorative effect of vitamin E	117
Table 39.	based on measured biochemical parameters from gestation experimental results	119
Table 40.	based on measured biochemical parameters from lactation experimental results. Assessment of oxidative stress of the pesticide endosulfan and the ameliorative effect of vitamin E based on measured biochemical parameters from	120
Table 41.	gestation experimental results	122
Table 42.	lactation experimental results. Assessment of oxidative stress of the pesticide mixture and the ameliorative effect of vitamin E based on	123
	measured biochemical parameters from gestation and lactation experimental results.	125

VIII

Table No.		Page
Table 43.	Assessment of oxidative stress of the pesticide mixture and the ameliorative effect of vitamin E based on measured biochemical parameters from gestation and lactation experimental results.	126
Table 44.	Histopathologic changes based on scoring severity of injury in different organs from mouse dams and their pups following exposure to pesticide atrazine (ATZ) with and without vitamin E during gestation	130
Table 45.	Histopathologic changes based on scoring severity of injury in different organs from mouse dams and their pups following exposure to pesticide atrazine (ATZ)	
Table 46.	with and without vitamin E during lactation	133
Table 47.	(CPF) with and without vitamin E during gestation Histopathologic changes based on scoring severity of injury in different organs from mouse dams and their pups following exposure to pesticide chlorpyrifos	137
Table 48.	(CPF) with and without vitamin E during lactation Histopathologic changes based on scoring severity of injury in different organs from mouse dams and their pups following exposure to pesticide endosulfan	138
Table 49.	(END) with and without vitamin E during gestation Histopathologic changes based on scoring severity of injury in different organs from mouse dams and their	142
	pups following exposure to pesticide endosulfan END with and without vitamin E during lactation.	143

Table No.		Page
Table 50.	Histopathologic changes based on scoring severity of	
	injury in different organs from mouse dams and their	
	pups following exposure to pesticide mixture with and	
	without vitamin E during gestation	145
Table 51.	Histopathologic changes based on scoring severity of	
	injury in different organs from mouse dams and their	
	pups following exposure to pesticide mixture with and	
	without vitamin E during lactation.	147
Table 52.	Percent of change in some biochemical parameters in	
	the tested mice treated with the tested pesticides:	
	comparisons.	151

LIST OF FIGURES

Fig. No.		Pag
Fig. 1	Effect of different insecticide treatments on AST	
	activities in serum of mouse dams and their pups in	
	gestation.	82
Fig. 2	Effect of different insecticide treatments on AST	
	activities in serum of mouse dams and their pups in	
	lactation.	84
Fig. 3.	Effect of different insecticide treatments on ALT	
	activities in serum of mouse dams and their pups in	
	gestation.	86
Fig. 4	Effect of different insecticide treatments on ALT	
	activities in serum of mouse dams and their pups in	
	lactation.	88
Fig. 5	Effect of different insecticide treatments on ALP	
	activities in serum of mouse dams and their pups in	
	gestation.	90
Fig. 6	Effect of different insecticide treatments on ALP	
	activities in serum of mouse dams and their pups in	
	lactation.	92
Fig. 7	Effect of different insecticide treatments on BuChE	
	activities in serum of mouse dams and their pups in	
	gestation.	94
Fig. 8	Effect of different insecticide treatments on BuChE	
	activities in serum of mouse dams and their pups in	
	lactation.	96
Fig. 9	Effect of different insecticide treatments on urea	
	concentration in serum of mouse dams and their pups	
	in gestation.	99
Fig. 10	Effect of different insecticide treatments on urea	
	concentration in serum of mouse dams and their pups	
	in lactation.	101