

LOAD DISAGGREGATION SMART METERS BY NON-INTRUSIVE LOAD MONITORING USING EVOLUTIONARY ALGORITHMS

By

Moataz Mohsen Gendy Hady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRICAL POWER AND MACHINES ENGINEERING

LOAD DISAGGREGATION SMART METERS BY NON-INTRUSIVE LOAD MONITORING USING EVOLUTIONARY ALGORITHMS

By

Moataz Mohsen Gendy Hady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Dr. Essam El-Din Mohamed Abou El Zahab

Prof. in Electrical Power and Machines Engineering Department Faculty of Engineering - Cairo University

Dr. Mahmoud Mohamed Sayed

Electrical Power and Machines Engineering Department Faculty of Engineering - Cairo University

LOAD DISAGGREGATION SMART METERS BY NON-INTRUSIVE LOAD MONITORING USING EVOLUTIONARY ALGORITHMS

By

Moataz Mohsen Gendy Hady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the Examining Committee

Department, Helwan University)

Prof. Dr. Essam El Din Abo El Zahab

Prof. Dr. Mahmoud Ebrahim El Gilany

Prof. Dr. Abd El Ghany Mohamed Abd El Ghany

External Examiner

(Dean and Professor in Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Moataz Mohsen Gendy Hady

Date of Birth: 10/9/1988 **Nationality:** Egyptian

E-mail: moataz.m66@gmail.com

Phone: +201001441046

Address: 29 Khamael, Zaid, Giza, Egypt.

Registration Date: 1/10/2016

Awarding Date: 2017 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Essam El Din Mohamed Abou El Zahab

Dr. Mahmoud Mohamed Sayed

Examiners: Prof. Essam El Din Mohamed Abou El Zahab

Prof. Mahmoud Ebrahim El Gilany (Internal examiner)

Prof. Abd El Ghany Mohamed Abd El Ghany (External examiner)

(Dean and Professor in Electrical Power and Machines Engineering Department,

Helwan University)

Title of Thesis:

LOAD DISAGGREGATION SMART METERS BY NON-INTRUSIVE LOAD MONITORING USING EVOLUTIONARY ALGORITHMS.

Key Words:

Non-intrusive load monitoring; Load disaggregation; Smart meter application; Energy

Saving; Load Monitoring.

Summary:

This thesis presents non-intrusive load monitoring to achieve load disaggregation strategy as it considered one of the most important smart meter application. Load disaggregation is considered one of energy saving strategies.

We suggested an optimization evolutionary algorithm to estimate the status of household devices which can be described by binary status, on and off, devices for different time duration. We evaluate our suggestion of evolutionary optimization algorithms, Genetic Algorithm & Biogeography Based Optimization Algorithm, by Matlab simulation then compared the output results as well as the performance of both algorithms.

Acknowledgments

First, I would like to thank ALLAH the beneficent, the Merciful. Praise be to ALLAH, lord of the world. ALLAH guides me along the way.

I would like to thanks my two supervisors Prof. Dr. Essam El-Din Mohamed Abou El-Zahab, Department of Electrical Power and Machines, Faculty of Engineering, Cairo University and Dr. Mahmoud Mohamed Said, Department of Electrical Power and Machines Engineering, Faculty of Engineering, Cairo University, for their guidance, support, motivation and encouragement to work on this thesis. Their readiness for consultation at all times, their educative comments, their concern and assistance have been invaluable.

I am very thankful to my family for providing constant encouragement during my studies and assisting me in the completion of the thesis and pushing me to be better. They have great sources of inspiration to me and I thank them from the bottom of my heart.

At last but not least, I would like to thank the staff of electrical engineering department for constant support and providing a place to work during thesis period.

Table of Contents

ACKNOWLEDGMENTS	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
NOMENCLATURE	vii
ABSTRACT	viii
CHAPTER 1: INTRODUCTION	1
1.1. MOTIVATION	1
1.2 SMART GRID PREFERENCE	2
1.3 SMART GRID FLEXIBILITY	4
1.4 DEMAND MANAGEMENT	6
1.5 CHARACTERISTICS OF SMART METER	8
1.6 LITERATURE REVIEW	11
1.7 THESIS OBJECTIVES	13
1.8 THESIS ORGANIZATION	13
CHAPTER 2: NON-INTRUSIVE LOAD MONITORING	14
2.1. KNAPSACK PROBLEM	14
2.2. NON-INTRUSIVE LOAD MONITORING	30
2.3. EVOLUTIONARY ALGORITHMS	
2.3.1 Genetic Algorithm	34
2.3.2. Biogeography-Based Optimization	37
CHAPTER 3: PROBLEM FORMULATION	39
3.1. CASE STUDY	39
3.2. PROBLEM METHODOLOGY	44
CHAPTER 4: RESULTS	47
4.1. GENETIC ALGORITHM RESULTS	47
4.2. BIOGEOGRAPHY BASED OPTIMIZATION ALGORITHM RESULTS	50
4.3. EDGE DETECTION RESULTS	52
4.4. TYPICAL PROCESS FLOW	74
4.5. SIMULATION RESULTS	76
4.6. VALIDATION OF RESULTS	77

CHAPTER 5: CONCLUSION AND FUTURE WORKS	82
5.1 CONCLUSION	82
5.2 FUTURE WORKS	83
REFERENCES	84

List of Tables

Table 4. 1: Genetic Algorithm Performance	48
Table 4. 2: Biogeography Based Optimization Algorithm Performance	51
Table 4. 3: Genetic Algorithm Performance with Edge Detection Method	54
Table 4. 4: Biogeography Based Optimization Algorithm Performance with	Edge
Detection Method	55
Table 4. 5: House-hold appliances rated power	65

List of Figures

Figure 1. 1: Traditional Power Grid	1
Figure 1. 2: Two Way Smart Grid	2
Figure 1. 3: Wireless Smart Meter	8
Figure 1. 4: Smart Meter Topology	
Figure 1. 5: Load Steady State Identification by NILM	
Figure 1. 6: Load Transient State Identification by NILM	
Figure 2. 1: Knapsack Problem	.14
Figure 2. 2: 0-1 Knapsack Algorithm	16
Figure 2. 3: 0-1 knapsack algorithm step 1	. 17
Figure 2. 4: 0-1 knapsack algorithm step 2	. 18
Figure 2. 5: 0-1 knapsack algorithm step 3	
Figure 2. 6: 0-1 knapsack algorithm step 4	
Figure 2. 7: 0-1 knapsack algorithm step 5	
Figure 2. 8: 0-1 knapsack algorithm step 6	20
Figure 2. 9: 0-1 knapsack algorithm step 7	
Figure 2. 10: 0-1 knapsack algorithm step 8	
Figure 2. 11: 0-1 knapsack algorithm step 9	
Figure 2. 12: 0-1 knapsack algorithm step 10	
Figure 2. 13: 0-1 knapsack algorithm step 11	
Figure 2. 14: 0-1 knapsack algorithm step 12	
Figure 2. 15: 0-1 knapsack algorithm step 13	
Figure 2. 16: 0-1 knapsack algorithm step 14	
Figure 2. 17: 0-1 knapsack algorithm step 15	
Figure 2. 18: 0-1 knapsack algorithm step 16	
Figure 2. 19: 0-1 knapsack algorithm step 17	
Figure 2. 20: Algorithm code to find actual Knapsack items	
Figure 2. 21: The complementary algorithm step 1	
Figure 2. 22: The complementary algorithm step 2	
Figure 2. 23: The complementary algorithm step 3	
Figure 2. 24: The complementary algorithm step 4	
Figure 2. 25: The complementary algorithm step 5	
Figure 2. 26: The complementary algorithm step 6	
Figure 2. 27: Load Disaggregation from Total Power Consumption	
Figure 2. 28: Genetic Algorithm Flow Chart	
Figure 2. 29: Selection Process of GA	
Figure 2. 30: Crossover Process of GA	
Figure 2. 31: Mutation Process of GA	
Figure 2. 32: Graph for single habitat with its immigration rate λ and emigration rate	
	•
Figure 3. 1: Example for Total Power Magnitude over Time Duration 10 minutes	.40
Figure 3. 2: Example for Total Power Magnitude over Time Duration 20 minutes	.41

Figure 3. 3: Example for Total Power Magnitude over Time Duration 30 minutes	41
Figure 3. 4: Example for Total Power Magnitude over Time Duration 40 minutes	42
Figure 3. 5: Example for Total Power Magnitude over Time Duration 50 minutes	42
Figure 3. 6: Example for Total Power Magnitude over Time Duration 60 minutes	43
Figure 3. 7: Appliances Power Magnitude	43
Figure 3. 8: Switching Events of appliance number 1 during 1-Hour Duration Time.	44
Figure 4. 1 : Fitness Value over Generation Number by MATLAB	47
Figure 4. 2: Genetic Algorithm Performance over 1-Hour Time Duration	48
Figure 4. 3: GA Performance over Appliances Number by MATLAB	49
Figure 4. 4: Biogeography Based Optimization Algorithm Performance over 1-Hour	Time
Duration	
Figure 4. 5 : Power over Time Trend describing Threshold Value	
Figure 4. 6 : Genetic Algorithm Performance over 1-Hour Time Duration using	
Detection Method	
Figure 4. 7: Biogeography Based Optimization Algorithm Performance over 1-Hour	
Duration using Edge Detection Method	
Figure 4. 8: Error Table at Number of Appliances =15	
Figure 4. 9: Error Table at Number of Appliances =20 with Edge Detection Method	
Figure 4. 10: Total Power Magnitude over Time Duration 24 Hour	
Figure 4. 11: Operating Time of Refrigerator during 24-Hour Duration Time	
Figure 4. 12: Operating Time of Microwave during 24-Hour Duration Time	
Figure 4. 13: Operating Time of Properties Startlights during 24 Hour Duration Time	
Figure 4. 14: Operating Time of Reception Spotlights during 24-Hour Duration Time	
Figure 4. 15: Operating Time of Air Condition during 24-Hour Duration Tim	
Figure 4. 17: Operating Time of Electric Water Heater during 24-Hour Duration Time	
Figure 4. 17. Operating Time of Washing Machine during 24-Hour Duration Time Figure 4. 18: Operating Time of Ceiling Fan during 24-Hour Duration Time	
Figure 4. 19: Operating Time of Coffee Machine during 24-Hour Duration Time	
Figure 4. 20: Operating Time of Vacuum Cleaner during 24-Hour Duration Time	
Figure 4. 21: Refrigerator 1-Hour Time Profile	
Figure 4. 22: Microwave, Television, Spotlights and Ceiling Fan 1-Hour Time Profi	
Figure 4. 23: Air Condition 1-Hour Time Profile	
Figure 4. 24: Electric Water Heater 1-Hour Time Profile	
Figure 4. 25: Washing Machine and Coffee Machine 1-Hour Time Profile	
Figure 4. 26: Vacuum Cleaner 1-Hour Time Profile	
Figure 4. 27: Total Power Magnitude over Time Duration 12 Hour	
Figure 4. 28: Refrigerator Result	
Figure 4. 29: Microwave Result	
Figure 4. 30: Television Result	
Figure 4. 31: Reception Spot Lights Result	78
Figure 4. 32: Air Condition Result	79
Figure 4. 33: Electric Water Heater Result	
Figure 4. 34: Washing Machine Result	
Figure 4. 35: Ceiling Fan Result	
Figure 4. 36: Coffee Machine Result	81
Figure 4. 37: Vacuum Cleaner Result	81

Nomenclature

NIST National Institute of Standard and Technology

GPRS General Packet Radio System ISO Independent System Operators

LM Load Monitoring

ILM Intrusive Load Monitoring
NILM Non-Intrusive Load Monitoring

NILMS Non-Intrusive Load Monitoring System

MATLAB Matrix Laboratory Software

GA Genetic Algorithm

BBO Biogeography Based Optimization

n Knapsack Items number
 d Knapsack Profit Value
 x Knapsack Problem Solution
 W Knapsack Weight Value
 C Knapsack Capacity Value

KP Knapsack Problem

BKP Bounded Knapsack Problem
UKP Unbounded Knapsack Problem
FKP Fractional Knapsack Problem

B[n_w] Maximum Profit Value in dynamic programming

P Active Power (Watt)
Q Reactive Power (VAR)

EPRI Electric Power Research Institute

AC Alternating Current ID Identification

HVAC Heating, Ventilating and Air-Conditioning

VSD Variable Speed Drive P(t) Power as a function of time e(t) Error as a function of time

F_s Genetic Algorithm Fitness Function
 db Number of Appliances in Database
 PSO Particle Swarm Optimization

HSI Habitat Suitability Index
SIV Suitability Index Variable

 $\begin{array}{ll} \lambda & & Immigration \ Rate \\ \mu & & Emigration \ Rate \\ \end{array}$

VA Volt Ampere (Apparent Power Unit)

ME Mean Error

S Number of Algorithm Simulation Run

T Time (minutes)

k

Abstract

Non-intrusive load monitoring (NILM) method is essential for customer energy management solutions which can help to obtain energy consumption statistics for appliances. This information can be further used for load scheduling strategies for optimal energy saving. We suggested an optimization evolutionary algorithm to estimate the status of household devices which can be described by binary status, on and off, devices for different time duration. We evaluate our suggestion of evolutionary optimization algorithms, Genetic Algorithm & Biogeography Based Optimization Algorithm, by Matlab simulation then compared the output results as well as the performance of both algorithms.

Keywords: Non-intrusive load monitoring; Load Disaggregation; Smart meter application; Energy Saving; Smart Grid.

Chapter 1: Introduction

1.1. Motivation

The whole world interests in smart meters that measure the residential energy consumption and also real-time feedback information is being provided to the utility to improve energy consumption, improve maintenance mission and improve electrical power system design based on real electrical consumption database. Although the demand loads are increasing directly with population growth, there is no Investment in this field to be able to achieve maximum reliability of power flow. Consequently, the customers have only access to the total energy consumption. However, detailed information about individual consumption of household is not available.

A considerable reduction in Energy Saving Process can be achieved through monitoring of individual power consumption and transmit monitoring information to customer and utilities. Also, the recent smart meter installed at the power entry of the house is only providing a data of total power consumption and doesn't provide information about operated devices duration and their energy consumption for each device [1].

The traditional power grid as shown in the Fig. (1.1) consists of markets and operation for generation power plant, the generation station, transmission zone, distribution zone and finally the consumption zone. The main characteristic of traditional power grid is the one way flow of electricity and there is neither feedback of data nor real time information for the status of the grid.

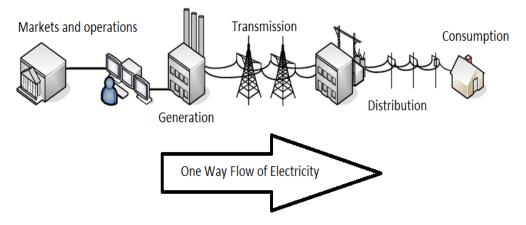


Figure 1. 1: Traditional Power Grid

In another hand, Smart Grid overview as shown in Fig. (1.2) illustrates the main component and philosophy of the smart grid system. "Smart grid" generally refers to a class of technologies that people are using to bring utility electricity delivery system into the 21st century, using computer-based remote control and automation. These systems are made possible by two-way digital communications technologies and computer processing that has

been used for decades in other industries.

They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers - mostly seen in big improvements in energy efficiency and reliability on the electricity grid and energy users' homes and offices. Currently, the customers have only access to the total energy consumption; detailed information about individual consumption of household is not available [2].

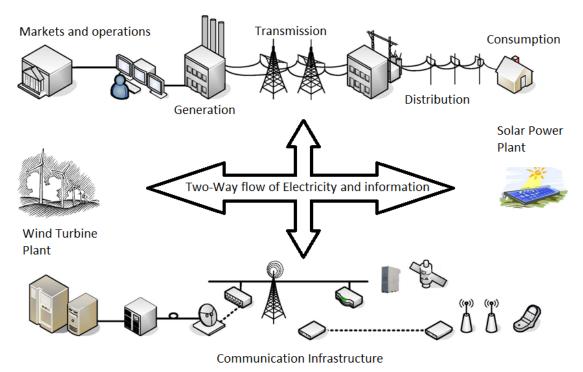


Figure 1. 2: Two Way Smart Grid

1.2 Smart Grid Preference

The smart grid has a preference advantages which are unavailable in the traditional grid. 1st it improves power reliability as the system provide better monitoring using sensors distributed in the network and the communication for data transmitted from the sensors, Although it provides balancing of supply and demand faster.

2nd Smart grid minimizes demand of backup power plant construction as it provides advanced metering infrastructure as well as demand side management.

3rd Smart grid enhances the efficiency and the capacity after integration with existing power grid, thanks to sensors distributed in network and communication which provide real-time resource management and better control.

4th Smart grid improves the ability to resist the disturbance in the network as well as providing self-recovery.

5th Smart grid provides renewable energy implementation although manage the integration