

AUTOMATIC WELL FAILURE ANALYSIS FOR THE SUCKER ROD PUMPING SYSTEMS

By

Ramez Maher Aziz Zaky Abdalla

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

AUTOMATIC WELL FAILURE ANALYSIS FOR THE SUCKER ROD PUMPING SYSTEMS

By Ramez Maher Aziz Zaky Abdalla

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Ahmed Hamdy El Banbi	Prof. Dr. Mahmoud Abu El Ela Mohamed	
Professor of Petroleum Engineering Faculty of Engineering, Cairo University	Professor of Petroleum Engineering Faculty of Engineering, Some University	

AUTOMATIC WELL FAILURE ANALYSIS FOR THE SUCKER ROD PUMPING SYSTEMS

By Ramez Maher Aziz Zaky Abdalla

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Approved by the
Examining Committee

Prof. Dr. Ahmed Hamdi El Banbi, Thesis Main Advisor

Prof. Dr. Mahmoud Abu El Ela Mohamed, Advisor

Prof. Dr. El-Sayed Ahmed El Tayeb, Internal Examiner

Dr. Mohamed Ghareeb Mustafa, External Examiner

Vice-president Eastern Hemisphere SSIL Artificial Lift Company

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Ramez Maher Aziz Zaky Abdalla

Date of Birth: 1/1/1991 **Nationality:** Egyptian

E-mail: rmz.aziz@gmail.com **Phone:** +201223566933.

Address: El-Seouf, Alexandria, Egypt

Registration Date: 1/10/2013 **Awarding Date:** 2018

Degree: Master of Science **Department:** Petroleum Engineering

Supervisors:

Prof. Dr. Ahmed Hamdi El Banbi

Prof. Dr. Mahmoud Abu El Ela Mohamed

Examiners:

Dr. Mohamed Ghareeb Mustafa (External Examiner) Vice-president Eastern Hemisphere SSIL Artificial Lift Prof. Dr. El-Sayed Ahmed El Tayeb (Internal Examiner) Prof. Dr. Ahmed Hamdi El Banbi (Thesis Main Advisor) Prof. Dr. Mahmoud Abu El Ela Mohamed (Advisor)

Title of Thesis:

AUTOMATIC WELL FAILURE ANALYSIS FOR THE SUCKER ROD PUMPING SYSTEMS

Key Words:

Sucker Rod Pumping System; Back Propagation Neural Networks (BPNN); Support Vector Machine (SVM); Dynamometer Card; Elliptical Fourier Descriptors (EFD)

Summary:

This study is a contribution to the area of fault automatic detection and diagnosis in the sucker rod pumping systems. Therefore, an intelligent system capable of detecting downhole sucker rod pumping systems problems was developed.

Acknowledgments

First of all, I would like to express my endless thanks to **ALLAH** for giving me the ability to perform this research.

I would like to extend thanks to many people who so generously contributed to the work presented in this thesis.

I would like to express my deepest thanks and appreciation to the supervisors of this thesis: *Prof Dr. Ahmed Hamdy El-Banbi*, and *Prof Dr. Mahmoud Abu El-Ela*, Mining, Petroleum, and Metallurgical Engineering Department, Faculty of Engineering, Cairo University for their extremely helpful advice, sincere assistance, continuous guidance, and encouragement in creating this work. Simply, without their kind helps, this work would not come to light.

I also appreciate the support of **Agiba Petroleum Company** for their support. They generously host me in Meleiha oilfield. That helped me to touch the practical part of my work. I would like to express my gratitude and deepest thanks to the family and the team of the *Agiba Petroleum Company*, especially, *Eng. Osama Ahmed El Baqly* (EGAS Chairman and Former Chairman and Managing Director of Agiba Petroleum Company), *Eng. Mohamed Abdu*, (Operations Manager - Agiba Petroleum Company) and *Eng. Michael Georg*e (Production Engineer - Agiba Petroleum Company) for their continuous follow-up and for their valuable discussion and advice during this work

I would like also to direct my gratitude to *Eng. Samir Siso* (Operations Manager at Badr El Din Petroleum Company), *Eng. Doaa Mousa* (Reservoir Engineering Department Manager - Belayim Petroleum Company) and *Eng. Mostafa Gad* (Production Engineer - Belayim Petroleum Company) for their help during the phase of the model validation.

Similarly, I would like to send my gratitude to *Prof. Dr. Leizer Schnitman* Electronic Engineering and Computing Department, The Federal University of Bahia and *Eng. Galdir Reges* (Researcher - Technological Training Center for Industrial Automation at the Federal University of Bahia) for their valuable discussions and support.

Last but not least, I would like to thank my professors and my colleagues, in the Petroleum Engineering Department, who encouraged me and gave me all the needed support during my academic life.

Dedication

To my parents.

This humble work is a sign of my love to you!

Table of Contents

ACKNOWLE	EDGMENTS	I
DEDICATIO	N	II
TABLE OF C	CONTENTS	III
	BLES	
	GURES	
	ATURE	
ABSTRACT.		X
CHAPTER 1	: INTRODUCTION	1
CHAPTER 2	: LITERATURE REVIEW	5
2.1.	Introduction	5
2.2.	SUCKER ROD PUMPING (MONITORING AND EVALUATION)	
2.2.1.	Physical Indicators	
2.2.2.	Production Testing	
2.2.3.	Fluid Level Monitoring	
2.2.4.	Dynamometer Survey	
2.3.	DYNAMOMETER TEST ANALYSIS	
2.4.	IDENTIFICATION OF THE DOWNHOLE PUMPING PROBLEMS USI	
2	DYNAMOMETER CARD	
2.4.1.	Gas Interference	
2.4.2.	Fluid Pound	
2.4.3.	Leaking of the Traveling Valve	
2.4.4.	Leaking Standing Valve	
2.4.5.	Gas Lock.	
2.4.6.	Plunger Hitting Bottom and Top	
2.4.7.	Malfunctioning Tubing Anchor	
2.4.8.	Polished Rod Bent	
2.4.9.	Too Viscous Oil	
2.4.10.	Rod Parted	
2.4.11.	Plugged Pump Intake or High Friction	
2.5.	EXPERT SYSTEMS FOR DOWNHOLE PROBLEMS DIAGNOSIS	
2.5.1.	Failure Prediction in Rod Pump Systems Using Change Point I	
2.5.2.	Failure Prediction in Rod Pump Systems Using Pattern Based.	
2.6.	OTHER PREDICTIVE AND DETECTIVE METHODS	
2.7.	APPROACHES TO EXTRACT THE FEATURES FROM THE DYNAMO	
,.	CARDS	
2.8.	CLASSIFICATION ALGORITHMS	
2.6.	CONCLUDING REMARKS	26

	STATEMENT OF THE PROBLEM, OBJECTIVES AND OGY	27
3.1.	STATEMENT OF THE PROBLEM	
3.2.	OBJECTIVES.	
3.3.	METHODOLOGY	
3.3.1.	Data Gathering and Analysis	
3.3.2.	Feature Extraction	
3.3.3.	Classifier	
3.3.4.	Testing and Evaluation	
CHAPTER 4:	IMPLEMENTATION OF THE METHODOLOGY	31
4.1.	Introduction	31
4.2.	DATA SELECTION AND ASSEMBLY	31
4.3.	DATA PREPARATION AND FEATURE CONSTRUCTION	32
4.3.1.	Elliptical Fourier Descriptors	33
4.3.2.	Implementation of Elliptical Fourier Descriptors	36
4.3.3.	Normalization EFD Coefficients	37
4.4.	PROGRAMMING SOFTWARE	39
4.5.	CLASSIFIERS	39
4.5.1.	Concept of the Supervised Learning Algorithms	40
4.5.2.	Artificial Neural Network (ANN)	
4.5.2.1.	Model Construction	
4.5.2.2.	Building Networks with Modules Using PyBrain	
4.5.3.	Support Vector Machine Module (SVM)	
4.5.3.1. 4.5.3.2.	Kernel Model Construction	
4.5.3.3.	Building SVM Algorithm Using SciKit-learn	
4.6.	OVERFITTING PROBLEM IN THE LEARNING ALGORITHMS	
4.7.	SOLUTIONS FOR THE OVERFITTING PROBLEM IN THE LEARNING	
ALGORITHM		51
4.7.1.	Regularization	51
4.7.2.	Validation and Model Selection	
CHAPTER 5:	RESULTS AND DISCUSSION	55
5.1.	Introduction	55
5.2.	ACCURACY OF THE ALGORITHMS	56
5.2.1.	Artificial Neural Network Accuracy	56
5.2.2.	Support Vector Machine Accuracy	57
5.3.	COMPARISON OF THE TWO ALGORITHMS	57
5.4.	EVALUATION FOR THE PROPOSED ALGORITHMS	57
5.5.	FIELD APPLICATIONS	58
5.6.	DISCUSSION	66
CHAPTER 6:	CONCLUSIONS AND RECOMMENDATIONS	67
6.1.	Conclusions	67
6.2	RECOMMENDATIONS	68

6.2.1.	Recommendations for the Data Collection	68
6.2.2.	Recommendation for the Model Construction	68
REFERENCE	S	69
APPENDIX A	: ARTIFICIAL NEURAL NETWORKS TRIALS	75

List of Tables

Table 4.1 – Classifications of the data	32
Table 4.2 – Number of neurons for each layer of the constructed ANN models	43
Table 5.1 – Results of the BPNN and SVM	57
Table 5.1 – Case #3 pumping conditions	64
Table A.1 – Neural network tuned parameters and accuracy	
Table A.1 – Neural network tuned parameters and accuracy (Continue)	76
Table A.1 – Neural network tuned parameters and accuracy (Continue)	77
Table A.1 – Neural network tuned parameters and accuracy (Continue)	78
Table A.1 – Neural network tuned parameters and accuracy (Continue)	79
Table A.1 – Neural network tuned parameters and accuracy (Continue)	80
Table A.1 – Neural network tuned parameters and accuracy (Continue)	81
Table A.1 – Neural network tuned parameters and accuracy (Continue)	82
Table B.1 – SVM tuned parameters and accuracy	84
Table B.1 – SVM tuned parameters and accuracy (Continue)	85

List of Figures

Fig. 1.1- Lufkin Middle East statistics for the artificial lift systems in the Western	
Desert fields	
Fig. 1.2 - Downhole problems of sucker rod pumps	3
Fig. 2.1 - The installation of fluid level survey	6
Fig. 2.2 - Ideal downhole dynamometer card	8
Fig. 2.3 - Real surface dynamometer card	9
Fig. 2.4 - Real downhole dynamometer card	9
Fig. 2.5 - Downhole dynamometer card with gas interference problem	11
Fig. 2.6 - Downhole dynamometer card with fluid pound problem	12
Fig. 2.7 - Downhole dynamometer card with traveling valve leak problem	13
Fig. 2.8 - Downhole dynamometer card with standing valve leak problem	15
Fig. 2.9 - Downhole dynamometer card with gas lock problem	16
Fig. 2.10 - Downhole dynamometer card with pump tagging down problem	17
Fig. 2.11 - Downhole dynamometer card with a malfunction in tubing anchor	18
Fig. 2.12 - Downhole dynamometer card with Pent Polished Rod	19
Fig. 2.13 - Downhole dynamometer card with viscous oil	19
Fig. 2.14 - Downhole dynamometer card for deep rod parted problem	20
Fig. 2.15 - Downhole dynamometer card for shallow rod parted problem	20
Fig. 2.16 - Downhole dynamometer card with a plugged pump intake	21
Fig. 2.19 - Example for the SOM map	24
Fig. 2.20 - Approaches used to extract features from pump cards	
Fig. 4.1 - Phases of the Knowledge Discovery in the Databases (KDD)	
Fig. 4.2 - Example of a real dynamometer card of rod pump	
Fig. 4.3 - The projection of x of Fig. 5.1 into a third variable (t)	35
Fig. 4.4 - The projection of dynamometer y-coordinate into a third variable (t)	
Fig. 4.5 - Supervised learning process	
Fig. 4.6 - The biological neuron	
Fig. 4.7 - Artificial Neural Network (ANN) structure	
Fig. 4.8 - SVM hyperplane	
Fig 4.9 - SVM testing stage	
Fig. 4.10 - The grid search algorithm application on SVM training flow chart	
Fig. 4.11 - 10-fold cross-validation	
Fig. 4.12 - Confussion Matrix	
Fig. 5.1 - Proposed model precision and recall with respect to all pump conditions	
Fig. 5.2 - Downhole card of Case # 1	
Fig. 5.3 - Valve analysis plot of Case # 1	
Fig. 5.4 - Constructed Fourier Descriptors card for Case # 1	
Fig. 5.5 - Neural network response of Case # 1	
Fig. 5.6 - Downhole card of Case # 2	
Fig. 5.7 - Valve analysis plot of Case # 2	
Fig. 5.8 - Fluid level analysis of Case # 2	
Fig. 5.9 - Fourier descriptors card reconstructed for Case # 2	
Fig. 5.10 - Neural network response of Case # 2	
Fig. 5.11 - Downhole card of Case # 3	
Fig. 5.12 - Neural network response of Case # 3	65

Nomenclature

Symbol

$a_{\rm i}^{({\rm j})}$	Hidden layer function of node i in layer j
a_n	The 1 st Fourier coefficient corresponding to n_{th} harmonic
b_n	The 2^{nd} Fourier coefficient corresponding to n_{th} harmonic
C	The cost of classification
c_n	The 3rd Fourier coefficient corresponding to n_{th} harmonic
d_n	The 4th Fourier coefficients corresponding to n_{th} harmonic
$\mathcal{F}_{\!\mu}$	The elliptical Fourier descriptors
\mathcal{F}_1	The elliptical Fourier descriptors corresponding to 1st harmonic
g(x)	Activation function
$\nabla g_i(x)$	Gradient of the activation function
H(y, y')	Cross entropy function
$h_{\theta}(x^{(i)})$	Hypothesis function
k(w,x)	Kernel functions
k	The order of Fourier coefficients to calculate
m	Number of training examples
n	Harmonic number
p	The index of the chain link.
S	Scale factor
T	Summation of all t increments
t_p	The lengths of the chain at the path link.
v	Number of input feature vector
W	Vector perpendicular to SVM hyper-plane
x_p	Links summation on x-axis.
y_i	The predicted probability distribution of the class <i>i</i>
y_i'	The true probability for that class
$\mathcal{Y}_{\mathcal{p}}$	Links summation on y-axis.
•	

Greek

Θ	Weights vector				
γ	Gaussian classification		parameter	handle	non-linear

Abbreviations

ANN	Artificial Neural Network
BFPD	Barrel of Fluid per Day
BOPD	Barrel of Oil per Day
BPNN	Back Propagation Neural Network
EFD	Elliptical Fourier Descriptors
ESP	Electrical Submersible Pump
FN	False Negative
FP	False Positive

KDD	Knowledge Dis	covery in Database

PCP	Progressive Cavity Pump
PIP	Pump Intake Pressure
RBF	Radial Basis Functions
ReLU	Rectified Linear Unit
SOM	Self-Organized Maps
Softmax	The Softmax Function

SV SVM

Standing Valve
Support Vector Machine
True Negative
True Positive TNTP Travelling Valve
Total Well Management TV

TWM

Abstract

Sucker rod pumping is one of the most common methods of artificial lift technologies. Monitoring the working conditions of the sucker rod pumping system is important to sustain acceptable productivity levels. Dynamometer cards are one of the main tools for rod-pumping well performance analysis. In this work, Back Propagation Neural Networks (BPNN) and Support Vector Machine (SVM) algorithms are used to analyze the features of the downhole dynamometer card and identify the sucker rod pumping system conditions.

A description model for the dynamometer cards was established. This model can reflect the characters of the dynamometer cards. Then, machine learning techniques were trained to generate failure prediction models to recognize downhole faults of the rod pumping systems. The failure prediction models were validated and tested with real field applications.

The proposed model is trained and tested by using real field data of 6,385 dynamometer cards. 29.2% of these cards represent sucker rod pumping systems of normal conditions, and 70.8% of these cards represent faulty sucker rod pumping systems. These field data collected from pumping unit API designations. The faulty systems include thirteen pumping condition: pumping off, plugged pump intake, gas interference, tubing anchor malfunctions, gas lock, standing valve leak, travelling valve leak, pump hitting on bottom, pump hitting on top, viscous oil problem, bent polished rod, shallow rod parted and deep rod parted. These data have been collected from several oil fields. The neural network model used 958 dynamometer cards for validation (to reduce overfitting). Finally, the model was tested against another 958 real dynamometer cards.

The BPNN model outperformed the SVM model in accuracy. The two models identified the sucker rod systems failure successfully with accuracy 98.5% for BPNN and 86% for SVM. The Proposed model successfully predict rod pumping system downhole condition with precision 89.9% and Recall 89.1% for API designated rod pumps.

This study is an original contribution to automatically analyze the dynamometer cards and accurately diagnose the downhole faults of the rod pumping systems.

Chapter 1: Introduction

Artificial lift techniques are widely applied in oil industry to enhance production either to maximize production rate of a naturally flowing well or to lift a dead well. Although there are several artificial lift techniques in the industry (such as Gas Lift, Electric Submersible Pump, Progressive Cavity Pump and Sucker Rod Pumps), the beam pumping system is the most commonly used technique. In which there are surface pumping unit and the sucker-rod string that runs down the well to connect them [1]. The most commonly applied artificial lift technique worldwide is rod pumping systems with more than 750,000 of the lifted wells use sucker-rod pumps [2].

In the Egypt's Western Desert fields, sucker-rod pumping is the major choice of oil producers. According to Lufkin Middle East statistics in 2008, approximately 85% of all Western Desert wells are artificially lifted using sucker rod pumping system as shown in Fig. 1.1 [2]. Those are making an average of +/- 57,000 barrels of fluids per day (BFPD) (+/-35,000 barrels of oil per day (BOPD)). Of the rest wells 13% are lifted with ESPs, the reminder are gas lift, hydraulic pumps, and other artificial lift methods. These statistics indicate that the dominance of rod pumping for onshore operations [2].

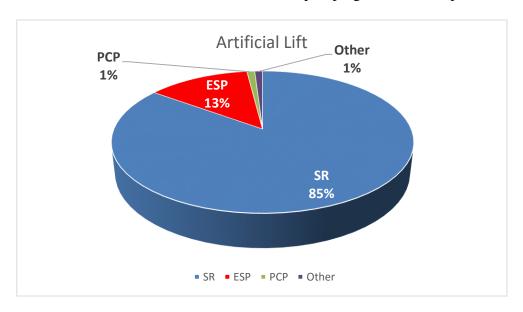


Fig. 1.1- Lufkin Middle East statistics for the artificial lift systems in the Western Desert fields

Well failures in oil field can drastically cause production loss and can greatly increase the lifting costs. Well failure in sucker rod pumping system is mainly identified from the anomalies of the dynamometer card [3]. Experts with rich experience are capable of identifying various types of anomalies via combining various types of information such as a well's recent performance, its events log and its neighboring well performance. Such anomalies, once identified, have high probability to be followed by a failure in the