

By

Mohamed Amin Yahia Abd El-Azeem Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

By

Mohamed Amin Yahia Abd El-Azeem Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

By

Mohamed Amin Yahia Abd El-Azeem Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed Mohamed Fahim Sakr

Prof. of Automatic Control Systems
Electrical Power and Machines Department
Faculty of Engineering, Cairo University
GIZA, EGYPT

By

Mohamed Amin Yahia Abd El-Azeem Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the Examining Committee	
Prof. Dr. Mohamed Mohamed Fahim Sakr	Thesis Main Advisor
Prof. Dr. Ahmed Bahgat Gamal Bahgat	Internal Examiner
Prof. Dr. Mervat Abdel-Sattar Badr	External Examiner
The National Research Centre	

Engineer: Mohamed Amin Yahia Abd El-Azeem

Date of Birth: 31 / 10 / 1985 **Nationality:** Egyptian

E-mail: eng m.amin@hotmail.com

Phone: +2-01009593867
Address: Cairo, Egypt
Registration Date: 1 / 10 / 2012
Awarding Date: / / 2018
Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisor: Prof. Dr. Mohamed Mohamed Fahim Sakr

Examiners: Prof. Dr. Mohamed Mohamed Fahim Sakr (Thesis Main Advisor)

Prof. Dr. Ahmed Bahgat Gamal Bahgat (Internal Examiner)
Prof. Dr. Mervat Abd El-Sattar Badr (External Examiner)

(The National Research Centre)

Title of Thesis: DESIGN AND CONTROL ASPECTS FOR SOLAR

PHOTOVOLTAIC SYSTEMS

Keywords: Photovoltaic, Load Patterns, Grid-Tie Inverter, Control Strategy, Net

Investment

Summary: This research aims to demonstrate the importance of renewable

energy systems in general and solar energy in particular, where there is a severe shortage of non-renewable energy resources from natural gas, petroleum and others. The methodology of this research including a full study of the components of the photovoltaic solar system containing the characteristics and factors to determine the design requirements of any solar system, and the restrictions on the design and operation of the system. The study focused on the design of solar energy systems connected to the electricity network with spare batteries operating as an alternative source of energy in the case of network out of service. A study w conducted on the different load patterns on which the capacity of the solar system will be built. The design and control strategy of the system was discussed with number of technical, mathematical, and software methods that aimed to achieve the best efficiency in the design, operation of the system, and to find the error percentage between each method.

The simulation of this system was carried out in two integrated parts using the PV_{syst} (6.43) package, as the technical and financial parts. The results showed the extent climate in Egypt in the implementation of such projects, and showed decent technical efficiency of the system with some observations during some months of the year. In addition, the feasibility of economic study is acceptable with some reservations on the sale tariff of the energy to the public electricity network.

ACKNOWLEDGEMENTS

This work is dedicated to my thesis supervisor Prof. Dr. Mohamed Fahim Sakr, of the Department of Electrical Power and Machines, Cairo University, for his continuous support and guidance, which led to this achievement. This is equally to acknowledge my colleague and co-worker Ayman El Hakea, who holds a master's degree in construction engineering from the American University in Cairo, for his support in participation in editing and formulating this thesis.

This thesis is also dedicated to my dear family, starting by my parents, wife and son *Yahia*. Without their invaluable support and dedication throughout the sojourn of my master study, this work would not have been achievable.

Last but not least, I owe my sincere gratitude to my beloved father, the electrical consultant engineer *Amin Yahia* who supported me in all stages of my life both as a father and a friend, and who generously supported me technically and morally towards accomplishing this thesis.

TABLE OF CONTENTS

GLOSSARY OF SYMBOLS		V
GLOSSARY OF TERMS AND ABBREVIAT	IONS	VII
LIST OF FIGURES		IX
LIST OF EQUATIONS		XII
ABSTRACT		XIII
CHAPTER 1: INTRODUCTION		1
1-1 General Overview		1
1-2 Significance of PV System Worldwide at	nd in Egypt	1
1-2.1 Global and Local Solar Irradiance		1
1-2.2 PV Solar Energy Market Worldwide		2
1-2.3 PV Energy Market in Egypt		3
1-2.4 Types of PV Solar Systems		5
1-2.5 Traditional and Smart Grids		6
1-2.6 Pros and Cons of Photovoltaic Solar	Systems	8
1-3 Problem Statement and Project Motivation	on	9
1-4 Research Scope and Objectives		10
1-5 Research Methodology		10
1-6 Thesis Organization		10
CHAPTER 2: LITERATURE REVIEW		12
2-1 Introduction		12
2-2 Principles and Physics of Solar Cells		12
2-3 PN Junction		13
2-4 Band Gap Energy (Egap)		14
2-5 Types of Solar Cells		15
2-5.1 Cadmium Telluride Solar Cells (CdT	Te)	15
2-5.2 Copper Indium Gallium Selenide So	lar Cells (CIGS)	15
2-5.3 Amorphous Silicon (a-Si) Solar Cells	S	16
2-5.4 Mono-Crystalline (mono-Si) Solar C	'ells	17
2-5.5 Poly-Crystalline (poly-Si) Solar Cell	S	17
2-6 Balance of PV Solar System (BOS)		19
2-6.1 Three Sub-Systems of PV Solar Syst	tem	19
2-6.2 Power Conditioners		19
2-7 PV Solar Inverters		20
2-7.1 Types of PV Solar Inverters		20

	2-7.2 Maximum Power Point Tracking (MPPT)	21
	2-7.3 Anti-Islanding Protection	23
	2-8 Energy Storage	24
	2-8.1 Characteristics of PV Batteries	24
	2-8.2 Types of PV Secondary Batteries	27
	2-9 Charge Controller	33
	2-9.1 Solar Charge Controllers Configurations	34
	2-9.2 Solar Charge Controllers Topologies	35
	2-9.3 PWM or MPPT Charge Controller	36
	2-10 Mounting Structure	37
	2-11 Solar Tracking	38
	2-12 Combiner Box	38
	2-13 Meters	38
	2-14 Disconnect Switches	38
_	CHAPTER 3: RESEARCH METHODOLOGY	39
	3-1 General Overview	39
	3-2 System Design Using PVsyst and Analytical Methods	39
	3-2.1 Flow Chart of the Research Methodology	40
	3-2.2 Selection of Design Configuration	41
	3-3 Working Scenarios of Grid-Interactive PV Solar System	42
	3-3.1 Power Flow During Normal Conditions	42
	3-3.2 Power Flow During Utility Outage	43
	3-3.3 Power Flow in Case the Batteries Need Charging and Utility is in Service	43
	3-4 Layout of the Site	44
	3-5 Load Assessment	44
	3-5.1 Concerns of Loads Estimation	45
	3-5.2 Design Criteria of the System	45
	3-5.3 Load Patterns	46
	3-5.4 Estimation of KWh/day and KWp for the Planned Solar Station	48
	3-5.5 Hourly Energy Consumption	51
	3-6 Calculations of Solar Radiation and Sun Angles	52
	3-6.1 Determination of the Geographical Coordinates and Solar Radiation	53
	3-6.2 Determinations of the Solar Angles	55
	3-7 Specifying and Sizing the PV Solar Arrays	62
	3-7.1 Method – 1: Using Simple Power Equation	62
	3-7.2 Method – 2: Analytical Calculations	63
	3-7.3 Method – 3: Using Online Calculator	64

3-7.4 Performance Parameters of Nomina	ted Yingli Solar Module	66
3-7.5 The Required Space to Install Solar	Panels of the System	67
3-7.6 I-V and η Curves obtained by PVsy	st	67
3-8 Specifying and Sizing the Power Inverte	er with MPPT	68
3-8.1 The Advantages of Using Centralize	ed PV Power Inverter	69
3-8.2 The Disadvantages of Using Centra	lized PV Power Inverter	69
3-8.3 Efficiency of the Maximum Power	Point Tracking Inverter	70
3-8.4 Limitations and Control Strategy in	Connecting the PV Inverter to Grid	70
3-8.5 Grid-Tied Inverter Sizing Using PV	syst Software	77
3-8.6 Characteristic Parameters of the Sel	ected Inverter	78
3-9 Backup Batteries Sizing		78
3-9.1 Backup Batteries Design by Using 0	Civic Solar Software Tool	79
3-9.2 Design of Solar Batteries Analytica	lly	81
3-10 Sizing and Selection of the Off-Grid S	ystem	82
3-10.1 Concept of Sizing MPPT Charge O	Controllers Connected to GTI (1st Meth	hod) 83
3-10.2 Practical Method of Designing the	Off-Grid Part Using BBI (2 nd Method	i) 85
CHAPTER 4: ANALYSIS OF TECHNICAL	STUDY AND SIMULATION RESULT	rs 92
4-1 Introduction		92
4-2 Preliminary Sizing Results		92
4-2.1 Solar Irradiance Results and Simula	itions	92
4-2.2 Solar Angles Results and Simulatio	ns	96
4-2.3 Solar Arrays Results and Simulation	ns	100
4-2.4 Centralized Grid-Tied Inverter Resu	ılt and Simulation	102
4-2.5 Battery Bank Results		105
4-2.6 Battery-Based Inverter (Inverter/cha	arger) Results	106
4-2.7 Losses of the PV Solar System Ove	r a Year	106
4-2.8 Performance Ratio and Specific Yie	eld	107
4-2.9 Selection of Wires, Cables and Disc	connect Switches	108
4-2.10 Schematic Diagram of the System	after Design and Simulations	109
4-2.11 Carbon Balance Calculation		111
4-2.12 Productivity Evaluations at Differen	ent Periods of Time	111
CHAPTER 5: ECONOMICAL RESULTS	AND COST ESTIMATION	113
5-1 Introduction		113
5-2 PV Plant Life Time		113
5-3 Levelized Cost of Energy (LCOE)		113
5-4 Pay-Back Period		114
5-5 Electricity Tariffs in Egypt		118

5-5.1 Electricity Consumption Tariff of Egyptian Holding Company	118
5-5.2 Feed-in Tariff (FIT)	118
CHAPTER 6: CONCLUSION AND RECOMMENDATIONS	
6-1 Conclusion and Research Summary	119
6-2 Research Restrictions	121
6-3 Future Scope of Works	121
REFERENCES	
APPENDIX 1 – Yingli Solar YL310P-35b Data Sheet (Solar Panel)	127
APPENDIX 2 – SUNWAY TG485/800V-TE Data Sheet (GTI)	129
APPENDIX 3 – 8A8DLTP-DEKA Data Sheet (AGM Batteries)	131
APPENDIX 4 – Xantrex Freedom SW230 Data Sheet (Charger/Inverter))132
APPENDIX 5 – Simulation Report of 430KWp System (PV _{syst} V6.43)	134

GLOSSARY OF SYMBOLS

a-Si: Amorphous Silicon.

 A_z : The azimuth angle of the sun.

AC: Alternating Current.
Ah: Ampere Hour.

AGM: Absorbed glass mat (Type of batteries).

AM: Air Mass, used to define the spectrum of the sun (AM0, and AM1.5).

BBI: Battery-Based Inverter. BOS: Balance of System.

BTS: Battery Temperature Sensor.

c: Speed of light.
CdTe: Cadmium Telluride.

CIGS: Copper Indium Gallium Selenide.

 C_p : The ampere-hour capacity at 1A discharge rate.

DC:Direct Current.DOD:Depth of Discharge. E_{gap} :Band gap energy.

EEHC: Egyptian Electricity Holding Company. f: Frequency of the incoming photon.

FF: Fill Factor.

GTI: Grid Tied Inverter.
h: Planck Constant.

H: The average daily irradiation on a horizontal plane at the Earth's surface.

 I_{λ} : Spectral Irradiance.

*I*_{mpp}: Maximum Power Point Current.

I_{sc}: Short Circuit Current.
k: Peukert Coefficient.
K: Boltzmann Constant.
K_T: The clearness index.
KWh: Kilo Watt Hour.

KWp: Kilo Watt Peak Power. L_C : The collector length. LCE: Life Cycle Emissions.

MPPT: Maximum Power Point Tracking.NOCT: Nominal Operating Cell Temperature.

P: The profile angle of the sun.
PCC: The point of common coupling.

PF: The power factor.

PLL: Phase locked loop control system.

 P_a : The utility grid power.

 P_{lt} : Long-term flicker, used to define the voltage fluctuations in a time of 2 hrs.

 P_{ref} : Reference value of the active power (Watts).

 P_{st} : Short-term flicker, used to define the voltage fluctuations in 10 min.

PF: Power Factor.
PSH: Peak Sun Hours.
PV: Photovoltaic.

Q: Reactive power (Var).

 Q_{ini} : The reactive power injection.

q: Electron charge. **RE:** Renewable Energy.

RMS: Root Mean Square, used to define the voltage or current of an AC wave.

 S_{max} : Maximum apparent power (VA)

SI: Solar Irradiance.

 S_C : Spacing between solar collectors to avoid shading.

SG: Smart Grid.

SLF: System Losses Factor.
STC: Standard Test Conditions.
SWE: Staebler-Wronski Effect.
T_{cell}: The absolute cell temperature.
TOF: Tilt and Orientation Factor.
TSRF: Total Solar Resource Fraction.
V_{mpp}: Maximum Power Point Voltage.

 V_n : Nominal Voltage. V_{oc} : Open Circuit Voltage.

 α : The elevation angle, which describes the height of the sun.

 β : Tilt angle for the solar panel.

 $\Delta u(t)$: Voltage fluctuations as a function of time.

 θ_Z : The zenith angle of the sun. θ_i : The incidence angle of the sun.

 θ_{RF} The regulation factor \emptyset : The latitude of the site.

 \emptyset_i : The amplitude of the built-in potential.

 σ : Conductivity ranges for conductors, semiconductors, and non-conductors.

 $σ_Q$: The reactive voltage sensitivity. $σ_P$: The active voltage sensitivity. ω: The hour angle of the sun. δ: The declination angle.

GLOSSARY OF TERMS AND ABBREVIATIONS

Anti-Islanding: The case in which the continuity of driving power from the solar system occurs despite the power outage on the public electricity grid. Therefore, the anti-islanding protection must be done. This situation appears in the solar systems connected to the electricity grid.

C-rate: The rate at which a usage battery is discharged comparative to its maximum capacity. C-8 means that the battery will be fully discharged in 8 hours.

Depth of Discharge: DOD is the other method to specify a battery's state of charge (SOC).

Energy: The capacity to do work (Joule), and can be used to transfer charges over an electrical conductor (Current) from a power station to the commercial or residential applications.

Energy Density: The total energy stored in a system per unit mass $(\frac{J}{m^3})$.

Fill Factor: The ratio of maximum available power to the product of the open-circuit voltage (V_{oc}) , and the short-circuit current (I_{sc}) .

Kilo Watt Peak Power: KWp value states the output power accomplished by a solar array under STC.

Load Patterns: The distribution of electric loads throughout the day in terms of use and time to deduce the value of the actual consumption.

Life Cycle: The number of complete charge/discharge cycles that the battery is capable to backup before that its original capacity drops under 80%.

Maximum Power Point Tracking: MPPT is a method used usually with PV solar systems to maximize the production power with respect to all presence conditions. The MPPT appears clearly in I-V curve.

Meteo File: The file contains all available climate and weather conditions for most of the geographical locations in PV_{syst} software program. In addition, meteo is an Italian word that means weather.

Mismatch Factor: This factor occurs due to the losses caused by the interconnection of solar modules, which do not have identical properties. PV module mismatch recognizes that manufacturing does not produce equivalent PV solar modules. I-V characteristics have little variations from module to other. PV WATTS recommends a default value of mismatch as 0.98. Also, it is one of the aspects that produce overall DC-AC de-rating factor.

Nominal Operating Cell Temperature: The NOCT is representing the temperature reached by open circuit cells in a module when the value of irradiance is equal 800 W/m².

P-N Junction: Related to the border between p-type and n-type material in a semiconductor device.

Power: The rate at which electric energy is transferred, and measured in watt (Joule/sec).

Power Threshold: Commonly defined as the highest average power can be endured for an hour.

Pulse Width Modulation: PWM is a procedure used in most solar charge controllers for converting the amplitude of a certain signal into a pulse width of another signal.

PV Performance Efficiency: The efficiency refers to the share of energy in the form of sunlight that can be converted thru photovoltaic into electricity. Energy transferred through the components of the solar system that cause loss of energy absorbed by the sun. The most lost components of energy and less efficient are the solar panels. The energy loss of the system as a whole is estimated at 20% to 30% depending on the configuration of the system.

Self-Discharge: A phenomenon in batteries in which inside chemical reactions decrease the stored charge of the battery without any linking between the electrodes. In other words, the battery original capacity is assumed to be 100% but after a period of time the total capacity becomes 90% due to the self-discharge which reduces the life of batteries.

Solar Irradiance: The power per unit area arrived from the sun as the electromagnetic radiations (w/m^2).

Specific Gravity: Generally, the specific gravity is the ratio of the intensity of any material to the intensity of some other standard material. For batteries, it is represented as the ratio of the density of a battery sol to the density of water.

Standard Test Conditions: STC used to conduct persistent comparisons of solar arrays by different manufacturers. The STC are known as irradiation: 1000 W/m², temperature: 25°C, and AM1.5.

Temperature Coefficient: This coefficient describes the relative change of a physical property that is related with a given change in temperature (dt).

Total Harmonic Distortion: The ratio of the sum of the powers of all harmonics occurred in voltage or current for a signal to the sum powers of the fundamental signal.

Transposition Factor: The ratio of the global incident irradiance on the collector, to the global horizontal irradiance.

System Voltage: The DC electrical voltage that works through the solar system as a whole. So that this voltage corresponds to the characteristics of solar panels, voltage regulators, batteries, and electrical inverter. Typically, the system voltage is 12V, 24V, or 48V.

Shading in PV Applications: An important phenomenon occurs from near objects, such as trees, buildings and nearby clouds in the sky. It has a clear and strong effect which producing major losses for the solar system, and decreases the output power of the designed system.

Active Power (P): The useful power or the working power that utilizing by loads (Watts).

Reactive Power (Q): The power consumed in an AC circuit that does not perform any useful work, but has a great effect on the phase-shift between the voltage and the current waveforms, and measured in (Var).

Apparent Power (S): The relationship between the active and reactive power (VA).

LIST OF FIGURES

Figure 1 - 1: Global solar irradiance from Solargis 2013. Figure 1 - 2: Global PV power capacity	
Figure 1 - 3: The Kuraymat solar power plant in Egypt	
Figure 1 - 4: Grid-tied PV solar system block diagram	
Figure 1 - 5: Stand-alone PV solar system block diagram	
Figure 1 - 6: Smart grid concept block diagram	
Tiguic 1 - 0. Smart grid concept block diagram	0
Figure 2 - 1: General components of PV solar system	12
Figure 2 - 2: The Shockley-Queisser limit curve	14
Figure 2 - 3: Mono-Si solar module	
Figure 2 - 4: Global market share of PV solar cells	18
Figure 2 - 5: Utility-interactive PV solar system (Three Sub-systems)	19
Figure 2 - 6: Resulting I-V curve under STC	22
Figure 2 - 7: Anti-islanding operation	23
Figure 2 - 8: Power Vs energy density of solar batteries.	
Figure 2 - 9: The self-discharge of batteries	
Figure 2 - 10: The DOD in relation with life cycles of lead-acid batteries	26
Figure 2 - 11: Life cycles of Lead-acid and Ni-iron & Life cycles of Li-ion and AGM	
Figure 2 - 12: Plates design for flooded lead-acid batteries	
Figure 2 - 13: Capacity vs. Temperatures for Lead-Acid and Ni-Cad batteries	
Figure 2 - 14: Market share of Li-ion batteries	
Figure 2 - 15: Voltage discharge curve of Li-ion batteries	
Figure 2 - 16: Sample of PV charge controller (SBC-series)	
Figure 2 - 17: Shunt charge controller integrated with PV system	
Figure 2 - 18: Dual set point voltage controller	
Figure 2 - 19: Operation principles of PWM and MPPT charge controllers	
Figure 2 - 20: Performance of MPPT and PWM charge controllers	
Figure 2 - 21: Types of the mounting systems	
Figure 2 - 22: Disconnect switches used for grid-tied PV solar systems	38
Figure 3 - 1: Flow Chart of the designed PV solar system.	40
Figure 3 - 2: Typical grid-tied PV system	
Figure 3 - 3: Grid interactive PV solar system	
Figure 3 - 4: Location of PV solar plant in MIVIDA.	
Figure 3 - 5: Hourly energy consumption profile.	
Figure 3 - 6: The sun paths in Egypt without shadding	
Figure 3 - 7: General climate conditions in EGYPT (ClimaTemps)	
Figure 3 - 8: Zenith, Altitude, and Azimuth Solar Angles	
Figure 3 - 9: The declination angle (δ)	
Figure 3 - 10: The variations in the declination angle (δ)	
Figure 3 - 11: The hour angle (ω) related to the altitude and declination angles	
Figure 3 - 12: The incidence angle θi	
Figure 3 - 13: Amount of irradiance according to adjusting the tilt angle	
Figure 3 - 14: Yearly optimization of tilt and orientation plane	
Figure 3 - 15: The optimization of tilt and orientation plane in summer and winter	
Figure 3 - 16: Peak sun hours at 1KW/m ²	
Figure 3 - 17: Wholesale solar grid-tie system size calculator	65
Figure 3 - 18: Yingli Poly-Si solar panel (YL 310 p-35b)	
Figure 3 - 19: Performance of Yingli multi-crystalline (Poly-Si) solar panel	66