DEVELOPMENT OF GRINDING MACHINE SUITABLE FOR HORTICULTURAL BY-PRODUCTS

By

HEBA MAZEN AHMED MOHAMED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering Faculty of Agriculture Cairo University EGYPT

2013

APPROVAL SHEET

DEVELOPMENT OF GRINDING MACHINE SUITABLE FOR HORTICULTURAL BY-PRODUCTS

M.Sc. Thesis
In
Agric. Sci. (Agricultural Engineering)

 $\mathbf{B}\mathbf{y}$

HEBA MAZEN AHMED MOHAMED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2003

APPROVAL COMMITTEE

Dr. ADEL HAMED
BAHNASAWY
Professor of Agricultural Engineering.,
Faculty of Agriculture, Moshtohor, Benha University.
Dr. GAMAL EL- DEIN MOHAMED NASR
Professor of Agricultural Engineering and
Vice Dean for Education and Students, Fac. Agric., Cairo University .
Dr. AHMED EL-RAIE EMAM SULIMAN
Professor of Agricultural Engineering, Fac. Agric., Cairo University.
Dr. MOHAMED SAYED OMRAN
Associate Professor of Agricultural Engineering, Fac. Agric., Cairo
University.
Date:26 /

SUPERVISION SHEET

DEVELOPMENT OF GRINDING MACHINE SUITABLE FOR HORTICULTURAL BY-PRODUCTS

M.Sc. Thesis
In
Agric. Sci. (Agricultural Engineering)

By

HEBA MAZEN AHMED MOHAMED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2003

SUPERVISION COMMITTEE

Dr. Ahmed EL-Raie Emam Suliman Professor of Agricultural Engineering, Fac. Agric., Cairo University.

Dr. Mohamed Sayed OmranAssociate Professor of Agricultural Engineering, Fac. Agric., Cairo Univ.

Dr. Magdy Ahmed Baiomy
Head of Research, Agric. Eng. Res. Inst. Agricultural Research Center.MOA

ACKNOWLEDGMENTS

Thanks to Allah for gracious kindness in all the endeavors the author has taken up in his life.

The author wishes to express her sincere gratitude and most appreciation to Prof. Dr. Ahmed El-Raie Emam Suliman, Professor of Agricultural Engineering, Fac. Agric., Cairo University (Supervisor) for his helpful advise and guidance during the period of his supervision to this study. and Prof. Dr. Magdy Ahmed Baiomy Chief Res., Agric. Eng. Res. Inst. Research Center (AENRI) for suggesting the problem, supervision, continued assistance, and guidance through the course of my study and for their revision of the manuscript of this thesis.

No thanks can repay **Dr** .Nahied KHairy Ismail, Prof. of Agric. Eng Sec, Agric .Engineering Research Institute .for her support and patience, encouragement together with valuable directions during preparing the theoretical consideration.

Many thanks to **Dr. Mohamed Said Omran** Associate Professor of Agricultural Engineering, Fac. Agric., Cairo University for his support and helpful suggestion..

Finally, the author wishes to express her deepest appreciation to her Mother, father, husband, children (Malk, Ahmed, Jana), sisters and brothers and all when help her for their understanding, patience and loving encouragement.

ACKNOWLEDGMENTS

Thanks to Allah for gracious kindness in all the endeavors the author has taken up in his life.

The author wishes to express her sincere gratitude and most appreciation to Prof. **Dr. Ahmed El-Raie Emam**Suliman, Professor of Agricultural Engineering, Fac. Agric.,

Cairo University (Supervisor) for his helpful advise and guidance during the period of his supervision to this study.

and Prof. Dr. Magdy Ahmed Baiomy Chief Res., Agric. Eng.

Res. Inst. Research Center (AENRI) for suggesting the problem, supervision, continued assistance, and guidance through the course of my study and for their revision of the manuscript of this thesis.

Many thanks to **Dr. Mohamed Said Omran** Associate Professor of Agricultural Engineering, Fac. Agric., Cairo University for his support and helpful suggestion.

Finally, the author wishes to express her deepest appreciation to her Mother, father, husband, children (Malk, Ahmed, Jana), sisters and brothers and all when help her for their understanding, patience and loving encouragement.

Name of Gandidate: Heba Mazen Ahmed Mohammed Degree: M. Sc.

Title of Thesis: Development of Grinding Machine Suitable for Horticultural By-products

Supervisors: Dr. Ahmed EL-Raie Emam Suliman

Dr. Mohamed Said Omran.
Dr. Magdy Ahmed Baiomy.

Department: Agricultural Engineering. **Branch:** Agricultural Mechanization

Approval: / /

ABSTRACT

The grinding process of agricultural wastes is the important operation to produce the pre materials for many wastes uses. Then the importance of the horticultural wastes such as mango kernel, studying its properties and the operating parameter of grinding machine is the aim of this study. To achieve this goal experiments were carried out in Agricultural Engineering Research Institute (AEnRI) in 2009 –2010 seasons. The primary experiments aimed to determine some mango kernel properties (Mangifera indica) (local variety) that identify the grinding machine specification. The mango kernel properties were the ratio between seed and kernels, moisture content, the main dimensions (L - W - T), shpericity, the geometric and arithmetic diameters, surface area, coefficient of friction, hardness and shear stress. Based on the study properties the development and evaluation of the grinding machine was performed to suit mango kernels as hard wastes. The results indicated that the average of mango kernel ratio was about 74.5%, the average main dimensions were 53.97±21.50, 20.15±8.57 and 10.95±6.30mm for length, width and thickness, respectively. Average spherisity was(7.51±2.32%), geometric diameter was 4.19±1.76mm, arithmetic diameter was 28.35±3.88 mm and surface area 32.95±4.66 mm², coefficient of frictions on galvanized, stan steel and iron sheet were about 0.649, 0.674 and 0.674 respectively. Hardness (360.04±134.54N) and shear stress (230.66±92.86 N/mm²). The studied factors included drum speeds "S" (1500, 2000, 2500 and 3000 rpm) equivalent to (28.26, 37.68, 47.10 and 56.52 m/s) and knives number "N" (24, 36 and 48 knife). The grinding machine evaluation was based on determining the product quality (frequency distribution of grinding mango kernel size and mean weight diameters "MWD"), the machine performance (machine productivity, required power and specific energy consumption.) and grinding machinery costs. From the obtained results, it can be concluded that their manure grinding machine is suitable grind the local mango kernel at a feeding quantity of 20 kg, drum speed of 2000 rpm and knives number of 36 to obtain the homogeneous size distribution The studied operating Parameters provided MWD, machine productivity, required power, specific energy consumption and operating cost: 1.309 mm, 2.94 Mg/h, 3.60kW and 1.22 kW.h/Mg and grinding one Mg recorded 47.25 LE/Mg,17.4 Mg/day respectively. The developed grinding machine which was manufactured of local materials can be tested to grind many solid wastes to increase economic performance.

Key words: Mango kernels, grinding, hammer mill, particle size, energy, rotor shaft speed, required power,

DEDICATIN

I dedicate this work to my parents, sisters, brothers and my husband for all the support they lovely offered during my post-graduate studies.

ACKNOWLEDGMENTS

Thanks to Allah for gracious kindness in all the endeavors the author has taken up in his life.

The author wishes to express her sincere gratitude and most appreciation to Prof. **Dr. Ahmed El-Raie Emam Suliman**, Professor of Agricultural Engineering, Fac. Agric., Cairo University and **Dr. Mohamed SAYED Omran** Associate Professor of Agricultural Engineering, Fac. Agric., Cairo University for suggesting the problem, supervision and continueious assistance. And their helpful advice and guidance through the course of study and reveision the manuscript of this thesis. also many thanks to **Dr. Magdy Ahmed Baiomy** Head of Res., Agric. Eng. Res. Inst. Agricultural Research Center for sharing supervision and revision .Grateful appreciation is also extended to all staff members of the Agric. Eng. Department, Faculty of Agriculture, Cairo University.

Special deep appreciation is given to my father, mother, brothers and sisters.

Finally, my deepest appreciation to my spouse, my kids (Malk, Ahmed, Jana), and all whom who helped for their understanding ,patience and loving encouragement.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
1.Amount of Agricultural Processing Residues Especially Fruit	4
2.The Agricultural Processing Residues	5
3. The Mango Kernels Properties and Uses	6
5. The Grinding Machine	16
a) Types of grinding machines	17
b) The grinding machine utilization	20
6. Factors Affecting Grinding Machine Performance	24
7.The Hammer Mill Studied Parameters	28
8- Grinding Machinery Costs	36
a) Ownership costs	36
b) Operating costs	39
MATERIALS AND METHODS	41
1. Materials	41
a. Mango kernels	41
b. The grinding machine	42
2 .Methods	52
1. The mango kernels properties	52
a. Physical propertiesb. Chemical properties	52
c. Mechanicals properties	52

2. Experimental Design	53
3. Statistical analysis	53
4. Methods of Measurements	54
A. Mango kernels properties(1)Physical properties	54
a. Percentage of kernelsb. Main dimensions	54
c. The mango kernel moisture content	54
a. Geometric and arithmetic diameter b. Sphericity	55
e. Surface area	55
(2)Mechanical properties	56
d- Hardness and shear stresse. Coefficient of friction	56
B. Product quality	56
1. frequency distribution of grinding mango kernel size	56
2. Mean weight diameters (MWD)C. Grinding Machine performance	57
1 . Machine productivity	
2. The required Power	57
3. The specific energy consumption	58
4. Grinding Efficiency	59
5. Grinding costs	
THEORETICAL APPROACH	60
1.The knives	60
2.The Shaft	68
3.V-Belt and Pulley	69
4.Power Required by Grinding Machine	69
RESULTS AND DISCUSSIONS	70
1. Mango kernels properties	70
a. Physical properties	70

	1.Percentage of kernels	70
	2.Main dimensions of mango kernel	70
2.		72
	3. The geometric and the arithmetic mean diameters	72
	3. The average of mango kernel sphericity	72
4	4.The mango kernel surface area	72
	b. Chemical properties of mango kernel	73
	c. Mechanical properties of mango kernel	73
	1.Hardness and shear stress	73
	2. Coefficient of friction	74
2. The Gri	nding Machine performance	77
a. Free	quency distribution of grinding mango kernel size	77
b. Me	an Weight Diameter	77
c. Ma	chine Productivity	81
d. Rec	quired Power	82
e. The	e specific energy consumption	86
f-Grii	nding Efficiency	90
3. Grindir	ng Costs	90
a- Ov	vnership cost	90
b- Op	perating cost	91
SUMMA	RY	92
	USION	96
REFER	ENCES	97
APPEND	DIX	115
	SUMMARY	

LIST OF FIGURES

NO Title	Page
1. Elevation view of the grinding machine	44
2. The grinding machine	45
3. Schematic diagram of grinding machine feeding unit	4 -
4. the Feeding unit of grinding machine	. 45
5. The grinding unit	. 47
6. The flanges on the drum	. 48
7. The flange main parts	48
8. The flange dimensions	
9. knife	50
10. Drum with knives	50
11. The screen	50
12. Power source and transmission system	51
13. The elevation view of the grinding machine frame	52
14. The frame of grinding machine	52
15. The electronic digital caliper	55
16. The digital force gauge	57
17. Super clamp meter-300k	60
18: Distributed loads on the cutting tool	63
19. Affecting forces of the cutting process with counter-s	shear 61
20. The relationship between knives velocity and centri	ifugal force at 66

different knives number	
21. The relationship between knives velocity and centrifugal force at	68
different knives number	
22. The relationship between knives length and working stress on knife	
at different knives width	69
23. The relationship between knives length and working stress on	
knife at different knives thickness	70
24. The frequency distribution percent of mango kernel length	73
25. The frequency distribution percent of mango kernel width	73
26. The frequency distribution percent of mango kernel thickness	74
27. The Mango kernel hardness frequency	76
28. The Mango kernel shear Stress frequency	76
29. The frequency distribution percentage for grinding mango kernel	
size at different drum speeds	82
30. Effect of knife numbers on mean weight diameter at different	
drum speeds	83
31. The relation between the mean weight diameter at different drum speeds and knife numbers	84
productivity	86
33. Effect of drum speeds at different knife numbers on machine	
productivity	87
34.Effect of drum speed on required power at different knife numbers.	87
35. Effect of knife numbers on required power at different drum	

speeds.	88
36. The relation between the required power at different drum speed	
and knife numbers.	89
37. Effect of knife numbers on the specific energy consumption at different drum speeds.	91
38. Effect of drum speeds on the specific energy consumption at knife numbers.	92
39. The relation between the specific energy at different drum speeds and knife numbers.	89

INTRODUCTION

Grinding is one of the first basic operations when dealing with agricultural wastes directive to any of the by-products processes of grinds. Also it is the first pillar to reduce the volume of waste in order to facilitate trading and transportation .Due to the multiplicity of form and properties of these residues conducted on accurate studies should be the nature of each type of agricultural wastes until it is througen put with/without hurting the "size reduction" machine,especially when dealing with solid or large volume waste where often most of grinding machines are not suitable for such wastes.

El-Dorghamy (2010) stated that the amount of agricultural waste in Egypt ranged from 30 to 35 million tons/ year. Some of the agricultural waste are used as fodder, manufactured wood, biogas production and fuel in indoor primitive ovens that causes health problems and damage to the environment. The rest is burned in the field such as rice straw, causing local and regional air pollution problems.

The quantity of crop residues in Egypt was determined as about 40 million tons/year, beside 8 million tons/year of horticultural wastes according to the statistical survey of the (Egyptian Ministry of Agriculture,2012). Egypt produces about 534.434 tons of mangoes annually, discardab out 240 thousand tons of seeds (Central Administration for Orchards and Crops, 2010).

The all uses of mango kernels requare changing it to particles by grindig or crushing machine (Teles Rêgo *et al.*,2010).