Effect of Bovine Colostrum On CD 4-T cells, Prevention of Late Onset Sepsis and Necrotizing Enterocolitis in Preterm Neonates

Thesis

Submitted For Partial Fulfillment of Master Degree in Paediatrics

Presented by Maha Mokhtar Kamal

M.B, B.Ch, 2013 – Pediatrics Faculty of Medicine - Ain Shams University

Under Supervision of Prof. Hesham Abd El Samie Awad

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Assist. Prof. Rania Ibrahim Hossni Ismail

Assistant Professor of Pediatrics Faculty of Medicine – Ain Shams University

Assist. Prof. Deena Samir Mohamed Eissa

Assistant Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University

2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** Ibesham Abdelsamme Awad, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Rania Ibrahim Hossni Ismail, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Assist. Prof. Deena Samer Mohamed Eissa, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Maha Mokhtar Kamal

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	5
Review of Literature	
Preterm Neonatal Immune System	6
 Necrotizing Enterocolitis In Preterm Neonate 	25
 Prevention of Necrotizing Enterocolitis 	39
Patients and Methods	53
Results	63
Discussion	80
Summary	91
Conclusion	94
Recommendations	95
References	96
Arabic Summary	

List of Tables

Table No.	Title	Page No	•
Table (1):	Microbial pathogens and risk	factors	
14516 (1).	associated with neonatal sepsis		17
Table (2):	TÖllner Sepsis score		
Table (3):	Hematologic scoring system of Rodw		
Table (4):	Score for neonatal acute physiol	logy II	
Table (5):	(SNAP II)		24
Table (a):	Modified Bell Staging Criteri Necrotizing Enterocolitis	ia ior	97
Table (6):	Nutritional composition of huma		31
Table (0).	bovine colostrum		47
Table (7):	Immune factors in human and		11
	colostrum		47
Table (8):	Growth factors in human and		
	colostrum		47
Table (9):	Demographic data in the three		
	groups:		65
Table (10):	Anthropometric data in the three		
	groups		66
Table (11):	Feeding tolerance and TPN dura		
	three studied groups		67
Table (12):	Number, duration and severity of	-	
(1-)	attacks of the three studied groups		68
Table (13):	Inotropes, NEC and feeding intol	•	
	morbidity, mortality and durat		
	hospital admission of the three		co
Table (14).	groups.		69
Table (14):	Mechanical ventilation among		70
Table (15):	studied groups Comparison between neonates	who	10
1 avic (10):	received bovine colostrum and infar		
	fed breast milk or infant formula as		
	the outcome	· ·	71

List of Cables (Cont...)

Table No.	Title	Page	No.
Table (16):	T cells markers expression and c	hange	
	between initial and follow-up samp	les of	
	the three studied groups		72
Table (17):	Immunological T cells markers	(CD4)	
	percentage and change between initia		
	follow-up samples of infant formula g		72
Table (18):	Immunological T cells markers	-	
_ (_0,0_10	percentage and change between initia		
	follow-up samples of bovine colo		
	group.		73
Table (19):	Immunological T cells markers		10
1 able (13).	percentage) and change between		
	and follow-up samples of breast		71
TD 11 (90)	group.		74
Table (20):			
	lymphocytes and some demographic		
	feeding tolerance, sepsis score, inot	_	
	duration of hospital admission		75

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Comparison of ranges for white leukocyte count in preterm, newborns and in adult	term
Figure (2):	Developmental changes occurring human immune system early in life	
Figure (3):	Epidemiology of early and late of sepsis according to The Americans College of Obstetricians Gynecologists (ACOG) and the Americans Academy of Pediatrics (AAP)	rican and rican
Figure (4):	Pathophysiological risk factors for N	EC26
Figure (5):	Pathophysiology of NEC	27
Figure (6):	Distended, shiny abdomen assoc with advanced NEC	
Figure (7):	X-ray of neonate showing pneuma intestinalis	
Figure (8):	Left lateral decubitus radiograph si	
Figure (9):	Composition of Colostrum	46
Figure (10):	Negative correlation between initial $\%$ of lymphocytes and number of s attacks (P < 0.05)	epsis
Figure (11):	Negative correlation between initial $\%$ of lymphocytes and duration of s attacks (P < 0.05)	epsis
Figure (12):	Negative correlation between foll o CD4 % of lymphocytes and numb sepsis attacks (P < 0.05)	er of

List of Figures cont...

Fig. No.	Title	Page No.
Figure (13):	Negative correlation between follo CD4 % of lymphocytes and duration sepsis attacks (P < 0.05)	on of
Figure (14):	Negative correlation between change CD4 $\%$ of lymphocytes and numb sepsis attacks (P < 0.05).	er of
Figure (15):	Negative correlation between change CD4 $\%$ of lymphocytes and duration sepsis attacks (P < 0.05).	on of
Figure (16):	Positive correlation between initial % of lymphocytes and Birth weight 0.001)	(P <

List of Abbreviations

Abb.	Full term
<i>AAP</i>	.American Academy of Pediatrics
	.American College of Obstetricians and
	Gynecologists
APC	Antigen presenting cells
	.Bovine lactoferrin
BW	.Birth weight
C3	. Complement 3
C5a	. Complement 5a
CD	. Cluster of differentiation
CD62L	
<i>CLA</i>	. Conjugated linolenicacid
	. Coagulase-negative staphylococci
	.C-reactive protein
<i>CSF</i>	. Cerebrospinal fluid
	. Colony-stimulating factors
	. Computed tomography
	Disseminated intravascular coagulation
	.Epidermal growth factor
	Early onset sepsis
	.Nuclear transcription factor Forkhead box P3
<i>GA</i>	. Gestational age
<i>GALT</i>	. Gut associated lymphoid tissue
<i>GBS</i>	. Group B streptococcal
	. Growth hormone
HLA-DR	.Human leukocyte antigen – antigen D related
I/T ratio	.Immature to total neutrophils ratio
IFN-gamma	.Interferon-gamma
<i>Ig</i>	.Immunoglobulins
<i>IGF</i>	.Insulin like growth factor

List of Abbreviations (Cont...)

Full term Abb. IL.....Interleukin $IL-1\beta....Interleukin 1 beta$ IVIGIntravenous immunoglobulins LOS.....Late onset sepsis MDR GNBMultidrug-resistant Gram-negative bacilli MHC-class-I......Major histocompatibility complex class-1 NECNecrotizing enterocolitis NICUs......Neonatal intensive care units NO.....Nitric oxide NPONulla per os PAF.....Platelet-activating factor PAMP.....Pathogen associated molecular pattern PCR.....Polymerase chain reaction PDGF.....Platelet derived growth factor PE.....PreeclampsiaPLT.....Platelets PMNs.....Polymorphnuclear cells PROM Premature rapture of membranes PRR.....Pattern-recognition receptor PT.....Prothrombin time PTT.....Partial thromboplastin time RBCs.....Red blood cells RD.....Respiratory distress rhEPO.....Recombinant human erythropoietin rhG-CSF.....Recombinant human granulocyte colonystimulating factor

TCR.....T-cell receptor

TGF......Transorfming growth factor

List of Abbreviations (cont...)

Abb.	Full term	
<i>TGF-β</i>	Tumor growth factor beta	
<i>TLR</i>	Toll-like receptor	
TNF-α	Tumor necrosis factor alfa	
Treg cells	T regulatory cells	
<i>VEGEF</i>	Vascular endothelial growth factor	
VLA-1	Very late antigen-1	
<i>VLBW</i>	Very low birth weight	
<i>WBCs</i>	White blood cells	
Wt	$Weight$	

INTRODUCTION

ate-onset sepsis (LOS) and Necrotizing enterocolitis △(NEC) are a major cause of mortality and morbidity, including adverse long-term neurodevelopmental outcomes in preterm infants (Dong and Speer, 2014).

Immaturity of the immune system is more pronounced in preterm neonates. In fact, they have deficiencies in both innate and adaptive immunity and in the interaction between these two systems (Strunk et al., 2011). So they are at higher risk of acquiring infections, and this is a significant contributor to mortality in this group (Laws et al., 2007).

The incidence of LOS varies inversely with gestational age and birth weight (Hornik et al., 2012).

LOS and NEC are primarily occurs in premature and very low birth weight (VLBW) babies, the incidence varying from 5 to 10% in various neonatal intensive care unit (NICUs) (Thompson and Bizzarro, 2008).

Intestinal mucosa as a barrier contains a large number of immune cells, especially T lymphocytes which are localized within gut-associated lymphoid tissue (GALT) or diffusely throughout the intestinal lamina propria and overlying single layered epithelium (Agace, 2008). T-regulatory cells are a subset of CD4 T cells that are capable of regulating and suppressing the immune system and are essential for intestinal

immune homoeostasis through regulation of innate and adaptive host responses (Maloy and Powrie, 2001).

Many researchers believe that an exaggerated inflammatory response mounted by immature intestinal epithelial cells in response to abnormal intestinal colonization plays a vital role in the pathogenesis of NEC (Grave et al., 2007), and bacteria belonging to Enterobacteriaceae have often been linked to NEC (Hsueh et al., 2003).

Colonization with commensal bacteria soon after birth is essential for the development of normal intestinal function; however, this process is often altered in premature babies in NICUs, leading to colonization with pathogenic bacteria (Hsueh et al., 2003).

Colostrum is the first milk secreted at the time of parturition, differing from the milk secreted later, by containing more lactalbumin and lactoprotein, and also being rich in antibodies that confer passive immunity to the newborn, also called "foremilk". It lasts for 2- 4 days after the lactation is started. Colostrum is very important component of the breast milk and it has role to play in immune system of every mammal. The use of human milk has been consistently shown to reduce the incidence of NEC and sepsis (Kafetzis et al., *2003*).

Immunoglobulins in human milk reduce the adherence of pathogenic bacteria to the gut epithelium and thus decrease colonization by such bacteria (Van de Perre, 2003).

Other anti-infective factors and growth factors in human milk are also believed to play an important role. However, the use of exogenous oral immunoglobulins has not been shown to reduce NEC or sepsis (Foster and Cole, 2004).

A possible reason could be that anti-infective factors act in synergy and a single agent may not be effective. Commercially available bovine colostrum has high concentrations of anti-infective factors such as immunoglobulins, lactoferrin, organism-specific antibodies, lactoperoxidase, insulin-like growth factors and transforming growth factors. These components have substantial homology to their human counterparts (Balachandran et al., 2017).

Bovine colostrum has been tried in the treatment of Escherichia coli and Shigella (Ashraf et al., 2001) and Rotavirus diarrhea in children, Helicobacter pylori infection in children and E. coli intestinal infection in term and preterm neonates (Lodinová - Zádníková et al., 1987).

No major adverse effects were reported in any of the studies using bovine colostrum in infants and preterm babies (Rathe et al., 2014).

In an in vitro study, the authors showed that bovine colostrum significantly reduces the adherence of various Enterobacteriaceae species—known to be associated with NEC—to human intestinal epithelial cells (Aunsholt et al., *2014*).

A randomized controlled trial has shown that the use of bovine lactoferrin reduced the incidence of neonatal sepsis (Manzoni et al., 2010).

Till date, there are no studies in neonates on the use of bovine colostrum for the prevention of NEC.

In view of the above observations, we hypothesize that bovine colostrum by its content of immunoglobulin, lactoferrin and growth factors will decrease the incidence of late onset sepsis and necrotizing enterocolitis in artificially fed preterm neonate.