

Oocyte Competence and In Vitro Produced Embryos in Camels (Camelus dromedarius) with Emphasis on Gene Expression

Thesis presented by

Ahmed Abd Elfattah Mohammed Abd Elfattah

(BVSc, Benha University, 2012)

Submitted to Faculty of Veterinary Medicine, Cairo University

In partial fulfillment of the requirements for the degree of M.V.Sc. in Veterinary Medical Sciences (Theriogenology)

Under the supervision of

Dr. Nabil A. Hemeida

Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt

Dr. Mohamed A. I. Elsayed

Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt Dr. Omaima M. Kandil

Professor of Embryo Biotechnology National Research Center, Egypt

Name: Ahmed Abd-Elfattah Mohammed Abd-Elfattah

Date and place of birth: February 10, 1990, El-Qalioubiah, Egypt

Nationality: Egyptian

Degree: Master Degree in Veterinary Medical Science

Specialty: Theriogenology

Thesis Title: Oocyte Competence and In Vitro Produced Embryos in Camels (Camelus

dromedarius) with Emphasis on Gene Expression

Supervisors:

Dr. Nabil A. Hemeida

Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt

Dr. Mohamed A. I. Elsayed

Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt

Dr. Omaima M. T. Kandil

Professor of Embryo Biotechnology, National Research Center, Egypt

Abstract

"Oocyte Competence and In Vitro Produced Embryos in Camels (Camelus dromedarius) with Emphasis on Gene Expression"

Ahmed A. M. Abd-Elfattah, Faculty of Veterinary Medicine, Cairo University Master Degree Thesis in Theriogenology, 2016

Six experiments were conducted on dromedary camels during the breeding (November to April) and non-breeding (May to October) seasons for two successive years (2013/2014 and 2014/2015) in order to investigate factors affecting oocyte in vitro developmental competence and to investigate gene expression of matured oocytes. Selected (excellent and good quality) oocytes were cultured in TCM-199 and CR1aa media at 38.5 °C, 5% CO₂ for 40 hrs, without or with EGF. Higher (P<0.05) oocyte yield rate of excellent and good quality was observed during the breeding versus the non-breeding season. Camel oocytes cultured in TCM-199 showed better cytoplasmic maturation rate than CR1aa as expressed by increased percentage of GIII cumulus expansion. TCM-199 medium supplemented with EGF increased nuclear maturation rate versus its effect in CR1aa. Moreover, addition of EGF to TCM-199 and CR1aa improved cytoplasmic maturation rate. Cleavage rate of IVF oocytes increased in maturation medium TCM-199 + EGF when compared with TCM-199 without EGF. Natural parthinod camel embryos were higher during the breeding season in zygote (2nd pb), 2cell, 4-cell and 8-cell stages and embryo like structure when compared with the non-breeding season. Significantly (p<0.05) higher CX43, IGF1, ATP5A1 were found in matured oocytes of TCM-199+EGF group than immature and TCM-199 groups. BCL2 (apoptosis gene) was significantly (P<0.05) higher in TCM-199 camel oocytes group than that observed in TCM-199+EGF immature oocytes group.

In conclusion, breeding season was characterized by excellent and good oocyte yield.TCM-199 and CR1aa media were suitable for in vitro maturation of camel oocytes. IVF of matured camel oocytes can be done using epididymal sperm. Addition of EGF to culture media improved developmental competence of camel oocytes and embryos due to its effect on gene expression of matured oocytes. Natural parthinogenesis phenomenon was higher during the breeding season.

Keywords: Dromedary camel, Oocyte competence, In vitro maturation, Gene expression.

DEDICATION

Where would I be without my family? I would like to share my appreciation and gratitude to both of my parents, my brother and my sisters. Many times they have expressed their love and desire to see me succeed through prayers. Words fail me to express my appreciation to my Mother. I love you and give thanks for everything you have done for me and our family.

ACKNOWLEDGEMENTS

All praise is due to **Allah**, I praise him, seek his aid and forgiveness. I thank Allah Almighty for giving me the inspiration, patience, time, and strength to finish this work successfully.

This dissertation was the result of collective efforts of a number of important people who directly or indirectly assisted and supported me during my master studies. To those people, I owe my gratitude and thanks.

First and foremost, I would like to express my sincere gratitude and deepest appreciation to my supervisor, **Prof. Nabil A. Hemeida**, for his tireless help, advice, guidance, patience and wisdom, valuable comments and criticisms, encouragement, his personal support throughout the course of my master and learninning me to take a special attitude in presentation. Without his training lessons, I could never show my 3 years of work. His positive attitude and constant supports for guiding, reviewing and commenting my work have made this thesis possible. It has been a real privilege and honor for me not only to have him as my supervisor but also to know him. Last word you must know "you are a symbol of ethics and giving, from YOU I learn more than science I learn how to be a **HUMAN**".

Words fail me to express my appreciation to **Prof. Mohamed A. I. Elsayed** for his invaluable advice, guidance and support in each step throughout my graduate studies. Also I want to express my appreciation toward his tireless help during the course of this study and during writing and preparing this thesis. Without your continuous pushing to do better Also your comments and criticism I would never have ability to gain this experience in researches and scientific presentation.

Deepest thanks and appreciation to **Prof.Omaima M. Kandil** for her advice and support. In her leading laboratory at National Research Center, Egypt, she give me more than I imagine, start with coaching/teaching me the «abc» of lab

benching and facilities, in-vitro embryo production and molecular biology experimentation with enough patience and excellent pedagogy. Dr. Kandil expertise, advice, recommendations and valuable guidance were instrumental in the completion of this study, I never forget your mother heart of taking me with you to most of your scientific projects all over Egypt and see by my eye your tireless efforts, working day and night to get first embryo transferred bufflo ((Emy)). Dear teacher ((THANK YOV)).

Exceptional thanks to **Prof.** Ahmed Sabry Abdoon, for his great help and encouragement during the course of this work.

I would like to thank also my colleges in embryo biotechnology lab in the National Research Center Institute who made it a very special and enjoying place over the 2 years. You have provided me with encouragement, sound advice, good company, and lots of good ideas.

The present study was done in the "Embryo and Genetic Resources Conservation Bank" in National Research Center and funded by STDF project ID: 6901, in tittle "Genes regulate oocyte competence and embryo development in buffalo".

Hoping that this thesis may be useful and serve good purposes for all humankind, I finally would like to thank everybody who was important to the successful realization of my thesis, if I failed to include your name above, but you helped me in one way or another, my sincere thanks goes out to you.

Ahmed A. M. Abdelfattah Cairo, Egypt, January 2016

CONTENTS

Approval Sheet	I
Abstract	II
Dedication	II
Acknowledgements	IV
Table of Contents	V
List of Tables	IX
List of Figures	X
Introduction	1
Literature Review	
1. Dromedary camel	5
2. Camel reproduction	6
2.1. Seasonality	6
2.2. Ovarian follicular waves or dynamics	7
3. Oocyte competence	10
3.1. Oocytes quality	11
3.2. Effect of season on oocytes yield and quality	12
4. In vitro maturation (IVM) of oocytes	13
4.1. Criteria for oocytes maturation	15
4.1.1. Cytoplasmic maturation	16
4.1.2. Nuclear maturation	18
4.2. Factors controlling in vitro maturation	20
4.2.1. Effect of culture media on in vitro maturation of oocytes	20
4.2.2. Effect of Epidermal growth factor on IVM of oocytes	23
5. In Vitro Fertilization (IVF)	26
5.1. Camel epididymal sperm and IVF	26
5.2. In Vitro Culture (IVC) 6. Spontaneous parthenogenesis	28
6. Spontaneous parthenogenesis7. Gene expression	29 30
7.1. Effect of EGF on gene expression	32
7.2. Types of analyzed genes	33
7.2.1. Connexin gene	33
7.2.2. Insulin-like growth factor-I gene	34
7.2.3. ATP5A1 gene	35
7.2.4. BCL2 gene	36
Materials and Methods	
1. Materials	37
1.1. Biologicals	37
1.2. Chemicals	37

1.3. Equipment	38
1.4. Media	38
1.4.1. Aspiration media	38
1.4.2. Basic maturation media	39
1.4.3. In vitro Fertilization media	39
1.4.4. In vitro culture media	40
2. Methods	40
2.1. Ovaries collection	41
2.2. Cumulus oocytes complex (COCs) aspiration	42
2.3. Experimental design	42
2.3.1.Effect of season on yield and quality of camel oocytes	
2.3.2.Effect of various maturation media on in vitro maturation	43
(IVM) of camel oocytes	
2.3.3.Effect of addition of epidermal growth factor (EGF) to in	44
vitro maturation media on maturation rate of camel oocytes	
2.3.4.Influence of TCM-199 with or without EGF on in vitro	44
embryo developmental competence of the camel	
2.3.5.Effect of season on natural parthenogenesis phenomenon in	47
the camel	
2.3.6.Gene expression of in vitro matured camel oocytes using	
TCM-199 with or without EGF media	48
2.3.6.1. Investigation of gene expression	48
2.3.6.2. Oocyte denudation and storage	48
2.3.6.3. RNA isolation	48
2.3.6.4. Quantitative real-time PCR (QPCR) analysis	48
3. Statistical Analyses	50
3. Statistical Maryses	50
Results	
	51
1. Effect of season on oocytes yield and quality in the camel 2. Effect of TCM 100 medium with or without ECE on aumulus expansion	31
2. Effect of TCM-199 medium with or without EGF on cumulus expansion	<i>5</i> 1
rate of in vitro matured camel oocytes 3. Effect of TCM-199 medium with or without EGF on nuclear maturation	54
rate of in vitro matured camel oocytes	57
4. Effect of CR1aa medium with or without EGF on cumulus expansion	31
rate of in vitro matured camel oocytes	60
5. Effect of CR1aa medium with or without EGF on nuclear maturation	00
rate of in vitro matured camel oocytes	63
6. Comparing effect of culture media (TCM-199 and CR1aa) with or	03
	66
without EGF on cumulus expansion of camel oocytes 7. Comparing offset of culture madia (TCM 100 and CR1as) with or	00
7. Comparing effect of culture media (TCM-199 and CR1aa) with or	60
without EGF on nuclear maturation of camel oocytes	69
8. Effect of EGF supplement to the in vitro maturation media on cleavage	70
rate and embryo developmental competence in the camel	72
9. Natural parthenogenesis phenomenon in camel oocytes during the	7.
breeding and non-breeding seasons	75

10. Gene expression in immature and matured camel oocytes in TCM-199 and TCM-199+ EGF media	78
Discussion	
1. Effect of season on the oocyte yield of camel ovaries	84
2. Influence of culture media on in vitro maturation of camel oocytes	87
3. Effect of EGF on maturation rate of camel oocytes	89
4. Influence of TCM-199 with or without EGF on in vitro embryo	
developmental competence of the camel	93
5. Effect of season on natural parthenogenesis phenomenon in camels	95
6. Gene expression of in vitro matured camel oocytes	96
Summary	103
References	107
Abbreviations, expression and symbols	143
Arabic summary	146
Arabic abstract	150
Arabic approval sheet	151

LIST OF TABLES

No.	Title	Pages
1	Details of primers used for quantitative real-time PCR	50
2	Effect of season on oocyte yield and quality of the camel	52
3	Effect of TCM-199 medium with or without EGF on cumulus expansion rate of in vitro matured camel oocytes	55
4	Effect of TCM-199 medium with or without EGF on nuclear maturation rate of in vitro matured camel oocytes	58
5	Correlation coefficient of TCM-199 and TCM-199+EGF media on nuclear maturation rate, cumulus expansion and in vitro embryo development in the camel	59
6	Effect of CR1aa and CR1aa+EGF media on cumulus expansion of in vitro matured camel oocytes	61
7	Effect of CR1aa and CR1aa+EGF media on in vitro nuclear maturation rate of camel oocytes	64
8	Correlation coefficient of CR1aa and CR1aa+EGF media on nuclear maturation rate and cumulus expansion rate of camel oocytes	65
9	Comparing effect of TCM-199 and CR1aa with or without EGF on cumulus expansion of matured camel oocytes	68
10	Comparing effect of TCM-199 and CR1aa with or without EGF on nuclear maturation of camel oocytes	70

11a	Effect of EGF in culture media on cleavage rate and embryo development in the camel	74
11b	Correlation coefficient of TCM-199 and TCM-199+EGF media on in vitro embryo developmental stages in the camel	75
12	Effect of season in natural parthenogenesis phenomenon in camel oocytes	76
13	Correlation coefficient between season and natural parthenogenesis phenomenon in the camel	77
14a	The fold change of CX43 genes expression in immature and matured camel oocytes in TCM-199 and TCM-199+EGF	79
14b	The fold change of IGF1 genes expression in immature and matured camel oocytes in TCM-199 and TCM-199+EGF	80
14c	The fold change of ATP5A1 genes expression in immature and matured camel oocytes in TCM-199 and TCM-199+EGF	81
14d	The fold change of BCL2 genes expression in immature and matured camel oocytes in TCM-199 and TCM-199+EGF	82

LIST OF FIGURES

No.	Caption	Pages
1	Camel ovaries	40
2	Aspiration of camel oocytes using 22 g needle	41
3	Tail of epididymis and vas deference of the camel	45
4	Flushing of camel epididymal sperm	46
5	Camel oocyte quality: EX=Excellent oocytes, G= Good oocytes, F=Fair oocytes, D=Denuded oocytes	51
6a	Effect of season on yield of camel oocytes	53
6b	Effect of season on oocyte quality of the camel	53
7	Effect of TCM-199 medium with or without EGF on cumulus expansion rate of in vitro matured camel oocytes	56
8	Effect of TCM-199 medium with or without EGF on nuclear maturation rate of in vitro matured camel oocytes	59
9	Effect of CR1aa and CR1aa+EGF media on cumulus expansion of in vitro matured camel oocytes	62
10	Effect of CR1aa and CR1aa+EGF media on nuclear maturation rate of camel oocytes	65
11	Cumulus expansion grades of camel oocytes	66
12	Effect of in vitro maturation media on cumulus expansion rate of matured camel oocytes	67