

CFD MODELING OF A BUBBLE COLUMN REACTOR FOR THE PRODUCTION OF LINEAR ALPHA OLEFINS

By Adil Ali Mohammed Alhussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Chemical Engineering

CFD MODELING OF A BUBBLE COLUMN REACTOR FOR THE PRODUCTION OF LINEAR ALPHA OLEFINS

By Adil Ali Mohammed Alhussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> in **Chemical Engineering**

Under the Supervisors of Prof. Dr. Tarek M. Moustafa Prof. Dr. Seif-Eddeen K. Fateen

Professor Department of Chemical Engineering

Associate Professor Department of Chemical Engineering Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

Dr. Tamer S. Ahmed

Assistant Professor Department of Chemical Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY **GIZA-EGYPT** 2014

CFD MODELING OF A BUBBLE COLUMN REACTOR FOR THE PRODUCTION OF LINEAR ALPHA OLEFINS

By Adil Ali Mohammed Alhussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Ibrahem Abd Alaziz Gotb Ashour, External Examiner

Prof. Dr. Mai Mohamed Kamal-El Din, Internal Examiner

Prof. Dr. Tarek Mohamed Moustafa, Thesis Main Advisor

Prof. Dr. Seif-Eddeen K. Fateen, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA-EGYPT 2014 Engineer: Adil Ali Mohammed Alhussein

Date of Birth: 22 /6 /1974 **Nationality:** Sudanese

E-mail: adil200983@yahoo.com

Phone.: 01144646416

Address: 54 Ahmed Ibrahim Street -Fiasal-Giza

Registration Date: 1 / 10 / 2009

Awarding Date : / / **Degree :** Ph. D

Department: Chemical Engineering

Supervisors: Prof. Dr. Tarek M. Moustafa

Prof. Dr. Seif-Eddeen K. Fateen

Dr. Tamer S. Ahmed

Examiners: Prof. Dr. Ibrahem Ashor, External Examiner.

Prof. Dr. Mai Mohamed Kamal-El Din, Internal Examiner.

Prof. Dr. Tarek M. Moustafa, Thesis Main Advisor.

Prof. Dr. Seif-Eddeen K. Fateen, Member

Title of Thesis: CFD MODELING OF A BUBBLE COLUMN REACTOR FOR THE PRODUCTION

OF LINEAR ALPHA OLEFINS

Key Words: Linear α-olefins, petrochemical synthesis, kinetic model, Computational Fluid Dynamics,

oligomerization

Summary:

Linear α -olefins (LAOs) have found wide applications in various areas of petrochemical synthesis including the co-monomer for linear low density polyethylene (LLDPE) and the generation of plasticizers, detergents, surfactants, and lubricants. The purpose of this thesis is to develop a kinetic model and Computational Fluid Dynamics (CFD) model for bubble column reactor for the oligomerization of ethylene to LAOs. The development of such model helps in the study of the behavior of industrial LAOs reactors, as well as in the optimization of their operation. The connection between the reaction kinetics and fluid dynamics can add a real depth and provide a great understanding to industrial LAOs reactor. In addition, the kinetic model has been used in the simulation of falling film column to understanding the specifics of the absorption/reaction process for this reaction.

Three main studies have been performed. The first is the development of a kinetic model of the oligomerization of ethylene to LAOs for zirconium/aluminum and nickel/zinc catalyst systems. The second is the simulation of the oligomerization reaction of ethylene in industrial bubble column reactor for isothermal and non-isothermal operation. Finally, the third is the simulation of the oligomerization reaction of ethylene in a falling film column. In the first study, the kinetic model has been developed based on a four-step mechanism: site activation, initiation and propagation, chain transfer and site deactivation. The values of the kinetic parameters have been obtained for the developed kinetic models for two catalyst systems: zirconium/aluminum- and nickel/zinc-based catalysts systems. The performance of the model with the estimated parameters has been tested against the experimental data. The proposed kinetic model can predict the product distribution for the zirconium/aluminum catalyst system with suitable accuracy. In addition, the model can predict the product distribution for the nickel/zinc catalyst system with good accuracy for all products.

The second study is the development of a Computational Fluid Dynamics (CFD) model for industrial bubble column reactor for both isothermal and non-isothermal operation, using COMSOL Multiphysics software. The concentration profiles of the LAOs products butene and hexane have been simulated. In addition, the volume fraction of the gas phase along the height in 2D for both isothermal and non-isothermal operation and the temperature profile for nonisothermal operation have been investigated. The results show that the concentration profile for the non-isothermal operation is higher than isothermal operation. In addition, the volume fraction of gas phase decrease, while the volume fraction of liquid phase increase in both cases. Moreover, the effect of height, diameter, temperature, and liquid flow rate on the LAOs products have been investigated. In the third study, the COMSOL Mutiphysics software has been used to simulate the mass transfer with chemical reaction in the falling film absorption process. The results show that the concentration profile of the absorption of the products through falling thickness at different time. The effects of liquid film thickness, catalyst concentration, catalyst /co-catalyst ratio, and temperature have been studied. From the results, an increase in temperature lead to an increase in the C4-C10 oligomer concentrations and a decrease in heavy LAOs products. An increase in catalyst concentration leads to an increase in the concentration of C4, C6 and C8, while for the heavy product of C12-C20, the concentration decreases up to a limiting value. The increase in co-catalyst /catalyst ratio lead to an increase in the concentration of C4 and C6, while for the heavy products of C12-C20, the concentration decreases up to a limiting value. Finally, as the liquid film thickness increases, the concentration of C4 increases.

Acknowledgements

I express my greatest gratitude to Professors Tarek M. Moustafa, for suggesting the topic of the thesis. I am very grateful, for the interesting topic proposed and also for the support and motivation he gave me, which were extremely important during this research.

I wish to thank Dr. Seif-Eddeen K. Fateen for guidance, patience, and support throughout my doctoral endeavor. He has shown a huge interest in this work and he has pushed me forward when needed. Dr. Tamer S. Ahmed was also affiliated with the progress of this research and I would like to thank him for his participation and advice over the years.

The second acknowledgements are for Karary University that financially supported this study with a PhD scholarship.

I am grateful also to all my big family, in particular, to my mother and father, my wife and sons and my sisters and brothers for their invaluable support and endurance throughout my entire study.

I dedicate this thesis to all my friends around the world.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	
LIST OF FIGURES	
NOMENCLATURE	VIII
ABSTRACT	XII
CHAPTER 1. INTRODUCTION	1
1.1 Background	1
1.2 Objective and outline	5
CHAPTER 2. LITERATURE REVIEW	7
2.1 Ethylene oligomerization to linear alpha olefins	7
2.1.2 Journal review 2.1.2 Patents reviews	7 14
2.2 Bubble column review	16
2.3 Parameter estimation review	22
CHAPTER 3. KINETIC MECHANSIM	
3.1 Introduction	25
3.2 Model Mechanism	25
CHAPTER 4. PARAMETER ESTIMATION	30
4.1 Introduction	30
4.2 Population balance equations in batch reactors	30
4.3 Experimental Data	31
4.4 Parameters Estimation	31
CHAPTER 5. MODELING OF FALLING FILM REACTOR	33
5.1 Introduction	33

5.2 Falling film reactor configuration	33
5.3 Governing equation and boundary conditions	34
5.3.1 Governing equation	36
5.3.2 Boundary conditions	37
5.4 Solution Method	37
CHAPTER 6. CFD MODELING OF BUBBLE COLUMN REACT	OR 38
6.1 Introduction	38
6.2 Reactor Configuration	38
6.3 Formulation of the problem in COMSOL Multiphysics	40
6.3.1 CFD model Multiphase Flow Interface	40
6.3.2 Chemical species transported	42
6.3.3 Heat Transfer Interface	43
6.4 Bubble column Simulation	44
CHAPTER 7. RESULTS AND DISCUSSION	47
7.1 Results and Discussion for parameter estimation	47
7.1.1 Results of experimental data for zirconium/aluminum catalyst system	47
7.1.2 Results of experimental data for nickel/zinc catalyst syst	tem 50
7.2 Results and Discussion for modeling of bubble column reactors.	or 52
7.2.1 Effect of the height	62
7.2.2 Effect of the diameter and liquid flow rate	63
7.2.3 Effect of temperature	65
7.3 Results and Discussion for falling film model	66
7.3.1 Overall results	66
7.3.2 Influence of liquid film thickness	70
7.3.3 Catalyst concentration effect	73

7.3.4 Co-catalyst / catalyst ratio effect	74
7.3.4 Effect of temperature	76
CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	78
8.1 Conclusions for parameter estimation	78
8.2 Conclusions for modeling of bubble column reactor	78
8.3 Conclusions for falling film model	79
8.4 Recommendations for future work	79
REFERENCES	80
APPENDIX A: PROPERTY DATA	95

List of Tables

Table 1.1: Names, structures and properties of linear alpha olefins	1
Table 1.2: Amount of LAOs manufactured worldwide in years 1999, 2003, 2005, and	2
2006	
Table 1.3 Industrial statistical ethylene oligomerization processes	4
Table 6.1 Overall design parameters of bubble column reactor	44
Table 6.2 design parameters of bubble column reactor for isothermal operation	44
Table 6.3: design parameters of bubble column reactor for non-isothermal operation	44
Table 6.4: Boundary conditions of the bubble column for isothermal operation	45
Table 6.5: Boundary conditions of the bubble column for non-isothermal	45
Table 7.1: Parameters estimated value for experimental data (1)	47
Table 7.2: Parameters estimated value for experimental data (2)	49
Table 7.3: Specification for coarser and finer grid meshes	51
Table 7.1: design parameter for overall results	65

List of Figures

Figure 5.1: Sketch of the falling film	35
Figure 5.2: Schematic of the falling film at the tube wall	36
Figure 6.1: Sketch of bubble column reactor	40
Figure 7.1: Comparison calculated and experimental data of lumped C4, C6 and C8 product	48
Figure 7.2: Comparison calculated and experimental data of C10+ product	48
Figure 7.3: Comparison calculated and experimental data of lumped C4,C6 and C8 product	50
Figure 7.4: Comparison calculated and experimental data of C10+ product	50
Figure 7.5: Mesh used in numerical of coarser mesh	52
Figure 7.6: Mesh used in numerical finer mesh	52
Figure 7.7: liquid velocity at 4 m height along the radius of the column for finer and coarser	
meshes	53
Figure 7.8: liquid velocity at 2 m height along the radius of the column for finer and coarser	
meshes	53
Figure 7.9: Concentration of butane (C4) product at 4 m height along the radius of the column	
for finer and coarser meshes	54
Figure 7.10: Concentration of butane (C4) product at 2 m height along the radius of the column	<i>5</i> 1
for finer and coarser meshes Figure 7.11: Concentration of the Butene profile along height of the reactor for isothermal	54
operation	55
Figure 7.12: Concentration of the Butene profile along height of the reactor for non-isothermal	56
operation	
Figure 7.13: Concentration of the C6 along the height of the reactor for isothermal operation	56
Figure 7.14: Concentration of the C6 along the height of the reactor for non-isothermal	57
operation.	
Figure 7.15: Volume fraction of gas phase for non-isothermal operation	57
Figure 7.16: Volume fraction of gas phase for non-isothermal operation	58
Figure 7.17: Concentration profile of C4 in the axial direction of reactor for isothermal operation	
	59
Figure 7.18: Concentration profile of C4 in the axial direction of reactor for non-isothermal	59
operation Figure 7.10. Temperature distribution in the reactor on 2D	60
Figure 7.19: Temperature distribution in the reactor on 2D Figure 7.20: liquid velocity profile in the reactor on 2D for isothermal operation	60 60
Figure 7.20: liquid velocity profile in the reactor on 2D for non-isothermal operation	61
Figure 7.22: Effect of height on the conversion of ethylene	62
Figure 7.23: Effect of diameter and liquid flow rate on the conversion	63
Figure 7.24: Effect of diameter and liquid flow rate on the temperature outlet	63
Figure 7.25: Effect of inlet temperature on the conversion of ethylene	64
Figure 7.26: Effect of inlet temperature on the outlet temperature	65
Figure 7.27: Concentration profile for ethylene monomer	66
Figure 7.28: Concentration profile of Butene (C4)	67
Figure 7.29: Concentration profile of Hexene (C6)	67
Figure 7.30: Concentration profile of C8	68
Figure 7.31: Concentration profile of C10 Figure 7.32: Concentration profile of Butene (C4) at 0.2 mm liquid thickness	68 69
Figure 7.32. Concentration profile of Butene (C4) at 0.2 mm liquid thickness Figure 7.33: Concentration profile of Butene (C4) at 0.4 mm liquid thickness	70
Figure 7.34: Concentration profile of Butene (C4) at 0.4 mm liquid thickness	70
Figure 7.35: Concentration profile of Butene (C4) at 3.0 mm liquid thickness	71

Figure 7.36: Concentration profile of Butene (C4) at 5.0 mm liquid thickness	71
Figure 7.37: Concentration profile of C4-C10 versus catalyst concentration	72
Figure 7.38: Concentration profile of C12-C20 versus catalyst concentration	73
Figure 7.39: Concentration profile of C4-C10 versus ratio of co-catalyst and catalyst	
concentration	74
Figure 7.40: Concentration profile of C12-C20 versus ratio of co-catalyst and catalyst	
concentration	74
Figure 7.41: Concentration profile of C4-C10 with temperature	75
Figure 7.42: Concentration profile of C12-C20with temperature	77

Nomenclature

A Pre-exponential factor

c concentration of the species, mol/m³

 c^* concentration of ethylene at equilibrium, mole/liter

C_{CAT} catalyst concentration, mol/liter

 C_{CAT}^{k} active catalyst concentration, mol/liter

 $C_{CAT^k.M}$ complex active catalyst/ethylene concentration, mol/liter

C_{decy} moles of deactivated catalysts, mol

C_M concentration of ethylene monomer, mole/liter

 C_M^k concentration of active ethylene monomer, mole/liter

 $C_{M^k.TEA}$ concentration of complex active ethylene monomer/co- catalyst,

mole/liter

 C_{P_0} concentration of active site, mole/liter

 C_{P_i} concentration of living polymers, mole/liter

 $C_{P_i^k}$ concentration of active living polymers, mole/liter

 $C_{P_i^k \cdot TEA}$ concentration of complex active living polymers/ co-catalyst,

mole/liter

C_{TEA} co-catalyst concentration, mole/liter

 C_{TFA}^{k} active co-catalyst concentration, mole/liter

 C_{TFA^kCAT} complex active co-catalyst/ catalyst concentration, mole/liter

 $C_{TEA_1^k.CAT}$ complex active co-catalyst/ catalyst concentration- catalyst,

mole/liter

 C_u model constant

 $C_{\varepsilon 1}$ model constant

 $C_{\varepsilon 2}$ model constant

D	diffusion coefficient, m ² /s
De	moles of dead polymer, mol
D	moles of dead oligomer, mol
E	activation energy, cal/mol
F	volume force, N/m ³
g	gravity (m/s ²)
h	Film thickness, mm
\mathbf{k}_1	rate constant of active site
k_2	rate constant of chain initiation
k_3	rate constant of chain propagation
k_4	rate constant of chain transfer
k_5	rate constant of deactivation
\mathbf{k}_{+1}	rate constant of attachment of the catalyst in the site activation
k ₋₁	rate constant of detachment of the catalyst in the site activation
k_{+2}	rate constant of attachment of the monomer in the site activation
k ₋₂	rate constant of detachment of the monomer in the site activation
k_{+4}	rate constant of attachment in the chain propagation reaction
k ₋₄	rate constant of detachment in the chain propagation reaction
k_{+5}	rate constant of attachment in the chain transfer reaction
k ₋₅	rate constant of detachment in the chain transfer reaction
$k_{c}^{'}$	rate constant of the first reaction of co-catalyst in the site
	activation
$k_c^{''}$	rate constant of the second reaction of co-catalyst in the site
17	activation
K_A	equilibrium constant of the catalyst in the site activation
K_{B}	equilibrium constant of the monomer in the site activation

K_C equilibrium constant of the co-catalyst in the site activation

K_D equilibrium constant in the chain propagation reaction

K_E equilibrium constant in the chain transfer reaction

M ethylene monomer

 M^k active ethylene monomer

mgl mass transfer rate from gas to liquid $(kg/(m^3 \cdot s))$

P concentration of living polymers, mole/liter

p pressure, Pa

 P_i Living oligomers

 P_i^k Active living oligomers

 P_0 Active site

R gas constant, mol/cal K

ri reaction rate for species, mol/(m³·s)

T temperature, K

Tr reference temperature, K

u velocity, m/s

v volume, liter

Greek Letters

α alpha position

 σ_k model constant

 σ_{ε} model constant

 ε dissipation rate of turbulent energy, (m/s³)

 ρ Density, kg/m³

 ϕ phase volume fraction, dimensionless

 μ_l dynamic viscosity of the liquid, Pa. s

 μ_T turbulent viscosity, Pa. s

Subscripts

c calculated mole fractions of product

e experimental mole fractions of product

CAT catalyst

 CAT^k active catalyst

TEA co-catalyst

 TEA^k active co-catalyst

l quantities related to the liquid phase

g quantities related to the gas phase