

Bacterial Degradation of Phenolic Compounds

A DISSERTATION

Presented to
Microbiology Department
Faculty of Science
Ain Shams University

By

Marwa Youssef Abdel-Salam Abdel-Rahman

Assistant Researcher
Water Pollution Research Department
National Research Centre
B.Sc. (2004); M. Sc. (2010) (Al-Azhar University)

For

The Degree of Doctor of Philosophy in *Science*, *PhD* (*Microbiology*)

Bacterial Degradation of Phenolic Compounds

A Thesis

Submitted By

Marwa Youssef Abdel-Salam Abdel-Rahman

Assistant Researcher
Water Pollution Research Department
National Research Centre
B.Sc. (2004); M. Sc. (2010) (Al-Azhar University)

PhD Thesis

Under the Supervision of

Dr. Einas H. El-Shatoury

Assistant Prof. of Microbiology, Faculty of Science, Ain Shams University

Dr. Gamila E. El-Taweel

Professor of Water Microbiology, Water Pollution Research Department, National Research Center

Dr. Sahar Saad Ali

Assistant Prof. of Chemical Engineering, Chemical Engineering Department, National Research Center

> Microbiology Department Faculty of Science Ain Shams University 2018

Bacterial Degradation of Phenolic Compounds

By

Marwa Youssef Abdel-Salam Abdel-Rahman

Assistant Researcher Water Pollution Department National Research Centre

B.Sc. (2004); M. Sc. (2010) (Al-Azhar University)

Supervisors:		
Dr. Einas H. El- Shatoury	Assistant Prof. of Microbiology, Faculty of Science, Ain Shams University	
Dr. Gamila E. El-Taweel	Professor of Water Microbiology, Water Pollution Research Department, National Research Center	
Dr. Sahar Saad Ali	Assistant Prof. of Chemical Engineering, Chemical Engineering Department, National Research Center	
This thesis for Ph.D. degre	ee in Microbiology has been a	pproved by:
Referees:		
Dr. Magda A. El-Meligy	Professor of Microbiology, Faculty of Science, Al-Azhar University	
Dr. Soaad Ahmed Abdullah	Professor of Microbiology, Girl's college, Ain Shams University	
Dr. Einas H. El- Shatoury	Assistant Prof. of Microbiology, Faculty of Science, Ain Shams University	
Dr. Gamila E. El-Taweel	Professor of Water Microbiology, Water Pollution Research Department, National Research Center	

Acknowledgment

I would like to express my sincere thanks and deep gratefulness to my supervisor **Dr. Einas H. El-Shatoury** Assistant Prof. of Microbiology, Faculty of Science, Ain Shams University, for her constructive suggestions, fruitful guidance, help and support for me during the time of research and writing of this thesis.

I am deeply indebted to my supervisor **Prof. Dr. Gamila. E. El-Taweel,** Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Center, for her important support and valuable suggestions throughout this work and also for providing all facilities to complete this thesis.

I am grateful to **Dr. Sahar Saad Ali** Assistant Prof. of Chemical Engineering, Chemical Engineering Department, National Research Center, for her suggestions, fruitful guidance and for her encouragement to me during all stages of preparing this thesis.

I am grateful to **Prof. Dr. Mohamed M. Kamel**, Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre, for his support throughout this work.

I would like to express my sincere gratitude and thanks to **Prof. Dr. Mohamed A. Abou-Zeid**, Professor and Head of Microbiology Department, Faculty of Science, Ain Shams University and also to **all staff members of Microbiology Department**, Faculty of Science, Ain Shams University for helping me to register and complete this thesis.

I am also grateful for the cooperation and assistance of all the members of Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre.

Finally, no words can express my deep gratitude and appreciation to my parents, my sister, my husband, my children Malak & Youssef and all my family members, for their everlasting love, continuous encouragement and support that helped me to go ahead with my thesis.

Marwa Youssef Abd El-Salam

Contents

	Page
Acknowledgment	I
Contents	III
List of tables	VIII
List of figures	XIV
Abbreviation	XXVII
Abstract	XXVIII
Introduction	1
Aim of the work	4
Review of Literature	5
1. Industrial pollution	5
2. Phenolic pollution source	6
3. Properties and chemical composition of some	
phenolic compounds	8
4. Hazardous of phenolic pollution and the regulatory rules	11
5. Treatment methods for the removal of phenolic	
wastes	13
6. Factors affecting biodegradation of phenolic	
compounds	20
6.1. pH	20
6.2. Cell density	21
6.3. Chemical structure of substrate	22
6.4. Initial concentration of substrate	22
6.5. Nitrogen source	23
6.6. Additional carbon source	24
6.7. Vitamins	25

	Page
7. Cell immobilization	26
8. Hybrid sequencing batch reactor for treatment of pharmaceutical wastewater	33
Materials and Methods	36
1. Materials	36
2. Enrichment, Isolation and Purification of Phenolic Compounds Degrading Bacterial Isolates	36
3. Screening of Phenolic Compounds Degrading Bacterial Isolates and Selection of the Most Potent Degraders	39
3.1. Determining the residual of phenolic compounds	41
3.2. Determining the Optical Density of Bacterial Cell Populations	42
3.3. Determination of Dry Biomass	42
4. Identification of the Most Efficient phenolic compounds Degrading Bacterial Isolates	42 43
4.1. The Biolog System	
4.2. 16s rDNA sequencing5. Optimization of Conditions for the Degradation of each Phenolic Compound by its Specified Defined Bacterial Consortium	46
5.1. Preparation of cultures	48
5.2. Degradation experiments	49
5.2.1. Effect of pH	50
5.2.2. Effect of cell density	51

	Page
5.2.3. Effect of nitrogen source and the optimum concentration of the	
appropriate source	51
5.2.4. Effect of vitamins	52
5.2.5. Effect of additional carbon source and the optimum concentration of the selected one	53
5.2.6. Effect of different initial concentrations of phenolic	
compounds	54
6. Immobilization Technique	54
6.1. Carriers used for cell immobilization	54
6.2. Preparation of bacterial cultures	55
6.3. Immobilization procedure	56
6.3.1. Immobilization by adhesion and formation of biofilm on Nylon sheet (N-SH)	56
6.3.2. Immobilization by encapsulation in Sodium Alginate (SA)6.3.3. Immobilization by encapsulation in	56
Polyvinyl alcohol - Sodium Alginate (PVA – alginate)	57
6.3.4. Immobilization by attachment and entrapment in polyurethane foam (PUF)	58
6.4. Relative mechanical strength, stability and reusability of immobilized cells test	58
6.5. Scanning Electron Microscopy (SEM)	59

	Page
6.6. Biodegradation test with free and	60
immobilized cells	60
6.7. Analytical methods	61
7. Hybrid sequencing batch reactor (HSBR) set-	
up	63
8. Culture Media	66
Results	68
Section (A)	68
1. Enrichment, Isolation and Purification of Phenolic Compounds Degrading Bacterial Isolates	69
2. Screening of Phenolic Compounds Degrading Bacterial Isolates and Selection of the Most Efficient Degraders	69
2.1. Screening of phenol bacterial degraders	70
2.2. Screening of 2, 4- dichlorophenol bacterial degraders2.3. Screening of 4- methoxyphenol	75
bacterial degraders 3. Identification of the Most Efficient Phenolic Compounds Degrading Bacterial Isolates by Biolog System and 16s rDNA	79
Sequence	84
3.1. Identification by Biolog System	84
3.2. Identification by 16s rDNA Sequence	92

	Page
Section (B)	100
1. Effect of pH	101
2. Effect of cell density on biodegradation of the three phenolic compounds	110
3. Effect of nitrogen source and its optimum concentration	120
4. Effect of vitamins	138
5. Effect of additional carbon source and its optimum concentration	158
6. Effect of initial concentrations of phenolic	178
compounds	193
1. Support material	194
2. Biodegradation test with free and	174
immobilized bacterial consortium	206
2.1. Biodegradation of phenol	207
2.2. Biodegradation of 2, 4-	223
dichlorophenol	
2.3. Biodegradation of 4- methoxyphenol	239
Section (D)	253
A preliminary study on hybrid sequencing batch reactor for the treatment of synthetic and industrial effluent	253
Discussion	261
Summary	308
Conclusion.	317
References.	319
Appendix	340
	340
Arabic Summary	

List of Tables

Table	Title	Page
No.		_
1	Properties and chemical composition of phenol, 2, 4-dichlorophenol and 4-methoxyphenol	9
2	Layout of assays in GEN III MicroPlate TM	45
3	Growth of phenol degrading bacterial isolates in mineral salts medium at phenol concentration 300 ppm	72
4	Growth of phenol degrading bacterial isolates in mineral salts medium at phenol concentration 400 ppm.	73
5	Growth of phenol degrading bacterial isolates in mineral salts medium at phenol concentration 500 ppm.	74
6	Growth of phenol degrading bacterial isolates in mineral salts medium at phenol concentration 600 ppm.	75
7	Growth of 2, 4- dichlorophenol degrading bacterial isolates in mineral salts medium at concentration 40 ppm.	77
8	Growth of 2, 4- dichlorophenol degrading bacterial isolates in mineral salts medium at concentration 50 ppm	78
9	Growth of 2, 4- dichlorophenol degrading bacterial isolates in mineral salts medium at concentration 60 ppm	79
10	Growth of 4- methoxyphenol degrading bacterial isolates in mineral salts medium at concentration 40 ppm	81
11	Growth of 4- methoxyphenol degrading bacterial isolates in mineral salts medium at concentration 50 ppm	82

List of Tables (Cont...)

Table	Title	Page
No.		
12	Growth of 4- methoxyphenol degrading bacterial isolates in mineral salts medium at concentration 60 ppm	83
13	Biodegradation of 400 mg L ⁻¹ of phenol by its specified bacterial consortium at different pHs	104
14	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium at different pHs	106
15	Biodegradation of 4- methoxyphenol by its specified bacterial consortium at different pHs	108
16	Biodegradation of phenol by its specified bacterial consortium at different volumes of the biomass (with cell density $2 \ OD_{600}$)	113
17	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium at different volumes of the biomass (with cell density 2 OD ₆₀₀)	115
18	Biodegradation of 4- methoxyphenol by its specified bacterial consortium at different volumes of the biomass (with cell density 2 OD ₆₀₀)	117
19	Biodegradation of phenol by its specified bacterial consortium with different nitrogen sources	123
20	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium with different nitrogen sources	125
21	Biodegradation of 4- methoxyphenol by its specified bacterial consortium with different nitrogen sources	127
22	Biodegradation of phenol by its specified bacterial consortium with different concentrations of ammonium chloride.	132
23	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium with different concentrations of ammonium chloride	134

List of Tables (Cont...)

Table	Title	Page
No.		
24	Biodegradation of 4- methoxyphenol by its specified bacterial consortium with different concentrations of ammonium chloride.	136
25	Biodegradation of phenol by its specified bacterial consortium with the presence of different vitamins at the optimal values of different other parameters	142
26	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium with the presence of different vitamins at the optimal values of different other parameters.	144
27	Biodegradation of 4- methoxyphenol by its specified bacterial consortium with the presence of different vitamins at the optimal values of different other parameters	146
28	Biodegradation of phenol by its specified bacterial consortium with the presence of different concentrations of the selected vitamins at the optimal values of different other parameters	152
29	Biodegradation of 2,4- dichlorophenol by its specified bacterial consortium with the presence of different concentrations of the selected vitamins at the optimal values of different other parameters	154
30	Biodegradation of 4- methoxyphenol by its specified bacterial consortium with the presence of different concentrations of the selected vitamins at the optimal values of different other parameters	156
31	Biodegradation of phenol by its specified bacterial consortium with different additional carbon sources at the optimal values of different other parameters	161
32	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium with different additional carbon sources at the optimal values of different other	1.60
	parameters	163

List of Tables (Cont...)

Table	Title	Page
No.		
33	Biodegradation of 4- methoxyphenol by its specified bacterial consortium with different additional carbon sources at the optimal values of different other parameters.	165
34	Biodegradation of phenol by its specified bacterial consortium with different concentrations of additional carbon source (lactose) at the optimal values of different other parameters	172
35	Biodegradation of 2, 4- dichlorophenol by its specified bacterial consortium with different concentrations of additional carbon source (sucrose) at the optimal values of different other parameters	174
36	Biodegradation of 4- methoxyphenol by its specified bacterial consortium with different concentrations of additional carbon source (lactose) at the optimal values of different other parameters	176
37	Biodegradation of different initial concentrations of phenol by its specified bacterial consortium at the optimal values of the previous studied parameters	183
38	Biodegradation of different concentrations of 2, 4-dichlorophenol by its specified bacterial consortium at the optimal values of the previous studied parameters	185
39	Biodegradation of different concentrations of 4-methoxyphenol by its specified bacterial consortium at the optimal values of the previous studied parameters	187
40	Degradation of phenol at concentration 1500 mg L ⁻¹ by freely suspended bacterial consortium and by bacterial consortium immobilized on PVA- alginate and on PUF	211
41	Degradation of phenol at concentration 2000 mg L ⁻¹ by freely suspended bacterial consortium and by bacterial consortium immobilized on PVA-alginate and on PUF.	212
	WILW OIL I CI	