

SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE SHEAR WALLS BASED ON NON-LINEAR PUSHOVER ANALYSIS AND TIME HISTORY ANALYSIS

By

SHERIF GAMAL ABDEL HAMID ABDEL HADI

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in structural engineering

Under Supervision of

Dr. BAHAA SHARF TORK

Associate professor Structural Engineering Department Ain Shams University

Dr. MARWAN SHEDID

Associate professor Structural Engineering Department Ain Shams University

Dr. EZZ EL DEEN MOSTAFA ARAFA

Lecturer Structural Engineering Department Ain Shams University

2018

SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE SHEAR WALLS BASED ON NON-LINEAR PUSHOVER ANALYSIS AND TIME HISTORY ANALYSIS

By

SHERIF GAMAL ABDEL HAMID ABDEL HADI

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in structural engineering

Thesis Approval

Examiners Committee	<u>Signature</u>
Dr. Mohamed Nour Eldin Fayed	
Professor of Structural Analysis Structural Engineering Department, Ain Shams University	
Dr. Hala Mohamed Gamal Eldin Elkady	
Professor and Head of Civil Department National Research Center	
Dr. BAHAA SHARF TORK	
Associate professor of Structural Analysis	

Structural Engineering Department, Ain Shams University

STATEMENT

This thesis is submitted in partial fulfilment of the requirements for the degree of Master of Science in Structural Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student Name

Sherif Gamal Abdel Hamid

ACKNOWLEDGEMENT

I like to say that no words can express my gratitude, love and appreciation to my wife, my father, my brother and my mother, whose help and encouragement were the main motive for me to complete this work. Thank you for supporting me throughout my entire life, words fail to explain how grateful I am for having you as my family.

I would like to express my gratefulness to my supervisors, Dr. Marwan Shedid, Dr. Ezz El Deen Mostafa and Dr. Bahaa Sharf Tork. Thank you for your guidance, support and assistance throughout this research, I am indebted to all of you with the knowledge and experience I gained. It was an honour working under your supervision.

My greatest appreciation goes to all my instructors and colleagues at the Faculty of Engineering, Ain Shams University. Each and every one of you participated in the achievement I made, by teaching, supporting and encouraging me throughout different stages. Thank you.

Finally, I would like to dedicate this work to my wife. She was the one who first believed I should go this path; this work is the outcome of his encouragement.

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF FIGURES.	iv
LIST OF TABLES.	vii
LIST OF ABBREVIATIONS AND SYMBOLS	viii
ABSTRACT	x
CHAPTER 1: INTRODUCTION	1
1.1 RESEARCH MOTIVATION	2
1.2 RESEARCH OBJECTIVES	3
1.3 RESEARCH METHODOLOGY	3
1.4 THESIS OUTLINE	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 INTRODUCTION	5
2.2 EXPERIMENTAL STUDIES	6
2.3 ANALYTICAL STUDIES	10
2.4 SEISMIC PERFORMANCE PARAMETERS	15
2.4.1 PLASTIC HINGE LENGTH	15
2.4.2 DISPLACEMENT DUCTILITY CAPACITY	18
2.4.3 RESPONSE REDUCTION FACTOR	19
CHAPTER 3: VERIFICATION OF ANALYTICAL MODELS	22
3.1 INTRODUCTION	22
3.2 REINFORCED MASONRY MODEL	22
3.2.1 EXPERIMENTAL DATA	22
3.2.2 NON LINEAR NUMERICAL MODEL	25
3.2.3 NON LINEAR SOLUTION PROCEDURE	26
3.2.4 WALL ELEMENT MODEL	28
3.2.5 CONSTITUTIVE MATERIAL MODELS	29
3.2.5.1 MASONRY MATERIAL	29
3.2.5.2 REINFORCEMENT MATERIAL	30

3.2.6 MODELING APPROACH	31
3.2.7 MODELING EVALUATION	31
3.2.7.1 LOAD-DISPLACEMENT CURVES	32
3.2.7.2 ULTIMATE STRENGTH	34
3.2.7.3 DISPLACEMENT AT ULTIMATE STRENGTH	34
3.2.7.4 MOMENT-ROTATION CURVE	35
3.2.7.5 THE IDEALIZATION OF LOAD-DISPLACEMENT CU	RVE.35
3.3 REINFORCED CONCRETE MODEL	36
3.3.1 EXPERIMENTAL DATA	36
3.3.2 CONSTITUTIVE MATERIAL MODELS	37
3.3.3 MODELING EVALUATION	38
3.3.3.1 LOAD-DISPLACEMENT CURVE	38
3.3.3.2 ULTIMATE STRENGTH	39
3.3.3.3 DISPLACEMENT AT ULTIMATE STRENGTH	39
3.4 CONCLUSION	39
CHAPTER 4: PARAMETRIC STUDY	41
4.1 INTRODUCTION	41
4.2 OBJECTIVES AND METHODOLOGY	41
4.3 RESPONSE REDUCTION FACTOR	41
4.3.1 OVER STRENGTH FACTOR	43
4.3.2 DUCTILITY FACTOR	43
4.3.3 DAMPING FACTOR	43
4.3.4 REDUNDANCY FACTOR	44
4.4 RESPONSE REDUCTION/MODIFICATION FACTOR (R) IN EC	P AND
OTHER BUILDING CODES	44
4.4.1 ECP (EGYPTIAN CODE OF PRACTICE)	44
4.4.2 ASCE (AMERICAN SOCIETY OF CIVIL ENGINEERS)	44
4.5 METHODS OF ANALYSIS	45
4.5.1 NON-LINEAR STATIC PUSHOVER ANALYSIS	45
4.5.2 NON-LINEAR TIME HISTORY ANALYSIS	46
4.6 MATERIAL MODELS CONSIDERED IN THE STUDY	47

4.6.1 MANDER'S MODEL FOR CONCRETE	47
4.6.2 MENEGOTTO-PINTO STEEL MODEL FOR REINFORCEM	MENT
MATERIAL	48
4.7 DESCRIPTION OF ANALYZED MODELS AND MATERIALS	
CHARACTERISTICS	49
4.7.1 SINGLE WALL	49
4.7.2 CONFIGURATION CONSIDERED IN THIS STUDY	51
4.8 RESULTS.	53
4.8.1 PUSHOVER RESULTS	53
4.8.2 NON-LINEAR TIME HISTORY RESULTS	60
4.9 SUMMARY AND CONCLUSIONS OF THE PARAMETRIC STU	JDY 65
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	67
5.1 INTRODUCTION	67
5.2 CONCLUSIONS	67
5.3 RECOMMENDATIONS FOR FUTURE RESEARCH	69
REFERENCES	70

LIST OF FIGURES

	Page
Figure (2.1): Flexural Failure (a) Shear Failure (b) of RCM Shear Walls	
(Shing et al., 1991)	6
Figure (2.2): Spread of Inelastic Curvature along Wall Height.	
(Yassin et al., 2015)	16
Figure (2.3): Definition of Yield and Ultimate Displacements (Priestley et a	l.
2007)	19
Figure (2.4): Definition of Response Reduction Factor (Chopra, 1995)	20
Figure (2.5): Equal Displacement Approach (Priestley et al., 2007)	21
Figure (3.1): Wall Reinforcement Details (Shedid et al., 2010)	24
Figure (3.2): Fiber Element Discretization (SeismoStruct Manual)	26
Figure (3.3): Flow Chart for Non-Converged Increment (SeismoStruct Manual	ial)28
Figure (3.4): Stress-strain relation for confined and unconfined concrete Mar	nder et
al. (1988)	29
Figure (3.5): Load-displacement curves for all six walls	33
Figure (3.6): Moment-rotation curve for wall 1	35
Figure (3.7): Idealization of load-displacement curve for wall 1	35
Figure (3.8.a): Plan geometry of the tested RC shear wall (D. Palermo and F.	J.
Vecchio, 2002)	36
Figure (3.8.b): Side view of web wall	37
Figure (3.8.c): Side view of flange wall	37
Figure (3.8.d): Reinforcement of the tested RC shear wall	37
Figure (3.9): Load-displacement curves for the tested RC shear wall	38
Figure (4.1): Relationship between response reduction/modification factor(R	.),
over-strength factor (Ω) and ductility factor $(R\mu)$	42
Figure (4.2): Relationship between elastic and in-elastic forces for (a) short p	period
(b) intermediate period (c) long period structures. (Newmark and Hall, 1982))43

Figure (4.3): Typical relationship between time and acceleration	47
Figure (4.4): Stress-strain relation for confined and unconfined concrete Mande	er et
al. (1988)	48
Figure (4.5): Menegotto-Pinto steel model (Seismostruct manual)	48
Figure (4.6): Reinforcement pattern of RC shear walls considered in this study.	49
Figure (4.7): Pushover curve for the single wall.	51
Figure (4.8): Configuration of RC shear walls considered in this study	51
Figure (4.9): Pushover curve for W1	54
Figure (4.10): Pushover curve for W2	54
Figure (4.11): Pushover curve for W3	55
Figure (4.12): Pushover curve for W4	55
Figure (4.13): Pushover curve for W5	55
Figure (4.14): Pushover curve for W6	55
Figure (4.15): Pushover curve for W7	56
Figure (4.16): Pushover curve for W8	56
Figure (4.17): Pushover curve for W9	56
Figure (4.18): Combined curve for pushover curves for all analysis matrices	57
Figure (4.19): Normalization for W1	57
Figure (4.20): Normalization for W2	57
Figure (4.21): Normalization for W3	58
Figure (4.22): Normalization for W4	58
Figure (4.23): Normalization for W5	58
Figure (4.24): Normalization for W6	58
Figure (4.25): Normalization for W7	59
Figure (4.26): Normalization for W8	59
Figure (4.27): Normalization for W9	59
Figure (4.28): Combined curve for normalized pushover curves for all analysis	
matrices.	60
Figure (4.29): Time-acceleration curves of selected ground motions	62

Figure (4.30): Comparison between time history curves and ECP response	
spectrum curves.	63
Figures from (4.31) to (4.36): Comparison between results from pushover	
analysis	66

LIST OF TABLES

Page
Table (2.1): Building loss in Strength as a Percentage of its Strength in
Translation
Table (2.2): shows that building gain in ductility as a percentage of its ductility in
translation; taking in consideration that elements tested were not elastic13
Table (2.3): Summary of Proposed Plastic Hinge Lengths in Literature17
Table (3.1): wall properties and experimental test results
Table (3.2): Parameter used for concrete modelling
Table (3.3): Parameter used for steel modelling
Table (3.4): Summary of experimental and analytical ultimate strength34
Table (3.5): Summary of experimental and analytical displacement at ultimate
strength
Table (3.6): Summary of experimental and analytical ultimate strength39
Table (3.7): Summary of experimental and analytical displacement at ultimate
strength
Table (4.1): R values in ASCE-7-10 code
Table (4.2): Results for RC shear wall model based on pushover analysis50
Table (4.3): Description of all reinforced concrete (RC) shear walls analysis
matrices
Table (4.4): Description and results for all reinforced concrete (RC) shear walls
models based on pushover analysis53
Table (4.5): Properties of ground motions (adopted from PEER 2006)62
Table (4.6): Results for all reinforced concrete (RC) shear walls based on time
history analysis63
Table (4.7): Comparison between time history results and pushover results (for
W1)64
Table (4.8): Some conclusions that are indicated with values

LIST OF ABBREVIATIONS AND SYMBOLS

- CM: Center of Mass
- CR: Center of Rigidity
- L_p is the plastic hinge length
- L_s is the distance between maximum and minimum moment of wall height
- D_b is the bar diameter
- L_w is the wall length
- A_r is the wall height to length ratio
- DBE: Displacement Based Element
- FBE: Force Based Element
- FE: Finite Element
- R: Response Reduction/Modification Factor
- RC: Reinforced Concrete
- RCM: Reinforced Concrete Masonry
- μ : Ductility Capacity
- Rµ: Ductility Factor
- Ω: Over-Strength Factor
- EQ : Earthquake
- V_e: Max elastic Base Shear
- V_d: Design Base Shear
- V_u: Maximum Base Shear
- Δ_{0.8u}: Displacement At 20% Strength Degradation
- Δ_d : Design Displacement
- Δ_{v} : Yield Displacement
- F_{cu}: Concrete Compressive Strength
- f_v: Steel Yield Stress
- E_s: Steel Young's Modulus
- E_c: Concrete Young's Modulus
- LLRS: Lateral Load Resisting System

- Δ_{max} : Chosen Maximum Displacement Limit
- Δ_y : Yield Displacement
- f'_m: Masonry Prism Compressive Strength
- f_y: Steel Yield Stress
- f_u : Steel Ultimate Strength
- PGA: Peak Ground Acceleration

ABSTRACT

Earthquakes are one of the most common natural disasters, which affect both human life and property. To avoid negative effects of earthquake, the nonlinear response of structures under dynamic loading should be accurately modelled to investigate their actual behaviour under earthquake loading to ensure safe and sound design. To yield proper results, accurate representative structural models should be developed for the elements resisting lateral loading and representative ground motions pertaining to the site should be employed. Then relating such response to that of elastic behaviour should be conducted to correlate response modification factors in design codes with actual response. The main objective of the research is to study factors affecting response modification factor for reinforced concrete shear walls such as vertical reinforcement ratios, aspect ratios and levels of axial stress, and then comparing calculated response reduction/modification factors for reinforced concrete shear walls with those recommended in ECP and in international codes

A total of 60 analytical models for RC shear walls structures analysis models using push over analysis and time history analysis. The models were chosen to test the effect of different parameters on the behaviour of the structure, namely, lateral load eccentricity, wall arrangement and presence of walls orthogonal to the loading direction. The software used in this study is Seismostruct 2016.

The research was carried out over three phases. The first was a review of previous literature related to the focus of the study. This was carried out in order to have a clear and broad understanding of the previous findings in this field.

During the second phase, a modelling technique for RCM/RC walls and buildings was developed and verified against the experimental results of seven individual walls and full structure available in literature. Some factors and recommendations regarding the modelling of RCM/RC walls under lateral loading using Seismostruct 2016 were extracted from this phase. It was found that the devised technique could be incorporated for the RC shear walls considered in the parametric study.

The results of the verification phase served as a basis for the last phase of the research during which a parametric study was generated in order to investigate the behaviour of the system level. The parameters tested were the aspect ratios, the levels of axial stress and the vertical reinforcement ratios. Throughout this phase, it was found some results such as:

- The response reduction / modification factor (R) value is sensitive to the variation in vertical reinforcement ratio more than the variation in level of axial stress.
- By increasing the aspect ratio, the R-value decreases. As an example; from W1-3, W1-6 to W1-12, R decreases with ratios of 10.1 % and 9.4 % respectively.
- By increasing the aspect ratio, the V_u -value decreases. As an example; from W1-3, W1-6 to W1-12, V_u decreases with ratios of 46.3 % and 52.5 % respectively.
- By increasing the aspect ratio, the $\Delta 0.8$ u-value increases. As an example; from W1-3, W1-6 to W1-12, $\Delta 0.8$ u decreases with ratios of 170.9 % and 178.0 % respectively.
- Increasing the vertical reinforcement ratio leads to lower μ and then lower R-value.
- Increasing aspect ratio leads to lower μ, and then lower R-value.
- By increasing the vertical reinforcement ratio and the level of axial stress, the structural stiffness increases.
- The R-values recommended in design codes are almost matching with the calculated values for the R-factor.
- R-values calculated using non-linear time history is considered more accurate than those calculated using pushover analysis as they don't depend on any assumption as R-value calculated bases on pushover analysis, that the R_{μ} depends on the time period as suggested by New mark and Hall.