

INVESTIGATION OF UNSUPERVISED PROCESSING METHODS FOR BRAIN-COMPUTER INTERFACE

By

Ola Aboul Fotouh Mohamed Ali Sarhan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

INVESTIGATION OF UNSUPERVISED PROCESSING METHODS FOR BRAIN-COMPUTER INTERFACE

By Ola Aboul Fotouh Mohamed Ali Sarhan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

Under the Supervision of

Prof. Dr. Ayman Mohamed Eldeib

Prof. Dr. Yasser M. Kadah

Professor of Biomedical Engineering Biomedical Engineering & Systems Faculty of Engineering, Cairo University Professor of Biomedical Engineering Biomedical Engineering & Systems Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

INVESTIGATION OF UNSUPERVISED PROCESSING METHODS FOR BRAIN-COMPUTER INTERFACE

By Ola Aboul Fotouh Mohamed Ali Sarhan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in

Biomedical Engineering and Systems

Approved by the **Examining Committee**

Prof. Dr. Ayman Mohamed Eldeib

Professor of Biomedical Engineering, Faculty of

Engineering, Cairo University

(Thesis Advisor)

Prof. Dr. Manal Abdel Wahed

Professor of Biomedical Engineering, Faculty of

Engineering, Cairo University

(Internal Examiner)

Prof. Dr. Mohamed Ibrahim El-Adawy

Professor of Electronic Engineering, Faculty of Engineering, Helwan University

(External Examiner)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer's Name: Ola Aboul Fotouh Mohamed Ali Sarhan

Date of Birth: 16/09/1990 **Nationality:** Egyptian

E-mail: <u>olasarhan90@gmail.com</u> **Phone:** 01203222003/01228092784

Address: 81- Gamal Abd El-Nasser St., End of Ahmed

Maher St, Faisal- Giza-Egypt

Registration Date: 01/10/2013 **Awarding Date:** / /2017

Degree: Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Prof. Dr. Ayman Mohamed Eldeib

Prof. Dr. Yasser M. Kadah

Examiners:

Prof. Dr. Ayman Mohamed Eldeib (Thesis Advisor) Prof. Dr. Manal Abdel Wahed (Internal examiner)

Prof. Dr. Mohamed Ibrahim El-Adawy

(External Examiner, from Helwan University)

Title of Thesis:

Investigation of Unsupervised Processing Methods for Brain-Computer Interface.

Key Words:

Brain computer interface; Motor imagery; P300; Signal processing; Unsupervised; Online Classification.

Summary:

In this thesis we study a new technique for BCI data that requires no earlier training. The new approach is applied to experimental data for motor imagery and P300-based BCI for both healthy and disabled subjects and compared to the classification output results of the same data utilizing the conventional processing techniques requiring earlier training. Regarding P300 based-BCI, The fundamental rule of this new class of unsupervised methodologies is that the trial with true activation signal inside every block must be distinctive from whatever remains of the trials inside that block. Consequently, a measure that is delicate to this difference can be utilized to settle on a choice taking into account a single block with no earlier training. As well, we tend to study different algorithms of aggregating info from many trials to extend communication speed and bit rate. Such aggregation strategies include simple average, PCA and PPCA. The results by averaging, from the sample individual cases show that the proposed technique supported SVD provided the most effective performance reaches 98.61%. Regarding the motor imagery part, we tend to used different classification methodologies as in time and frequency domain. And then we found that wavelet transform get best performance reaches 82.14%. So, these promising results recommend that this approach can reach accuracies not extremely far from those got with training while keeping up robust performance in practice.

Acknowledgments

I have pleasure to thank numerous people who contributed to success this research.

First and foremost I thank my God the Lord of the Worlds. May Allah accept my humble efforts and make this thesis helpful and usable to many people.

To *Dr. Yasser M. Kedah* .I feel highly indebted to you and I am deeply grateful for your suggestion of the topic, support, comments and guidance.

To Dr. Ayman Eldieb, I'd like to thank you for your great advises, support and help.

To my wonderful *Parent*, the words fail me to express my appreciation to best father and mother. All thanks and love for your guidance, advice and endless support.

To my lovely *Husband*, no words can describe my appreciation to my life partner. All thanks and love for his advice and endless support.

To all my family and my friends especially Ghaidaa Eldeeb and Aya Fawzy, all thanks for your belief in me, your constant support, encouragement, and cooperation all times.

Dedication

To my parents, my lovely husband and my lovely son Youssef, no words can describe your love, care and support.

Table of Contents

Acknowled	Igments	i
Dedication		ii
Table of Co	ontents	iii
List of Tab	les	v
List of Figu	ıres	vii
Nomenclat	ure	ix
Abstract		xi
Chapter 1:	Introduction	1
1.1.	BRAIN COMPUTER INTERFACE	
1.2.	THE NATURE OF EEG	
1.3.	RELEVANCE OF THE RESEARCH	
1.4.	PROBLEM DOMAIN AND MOTIVATION	
1.5.	ORGANIZATION OF THE THESIS	3
Chapter 2:	BCI Overview	4
2.1.	BACKGROUND	4
2.2.	WHAT IS BRAIN COMPUTER INTERFACE (BCI)?	
2.2.1.	Neurophysiological Signals	5
2.2.1.	1. Event – Related Potentials (ERPs)	6
2.2.1.2	2. Event Related Desynchronization/Synchronization	8
2.3.	BCI Framework	
2.4.	BCI's Applications	
Chapter 3:	P300 Based BCI Experiment	12
3.1.	Introduction	12
3.2.	EXPERIMENT DESCRIPTION	
3.2.1.	Experimental Schedule	13
3.2.2.	Preprocessing	13
3.3.	FEATURE EXTRACTION AND CLASSIFICATION STAGES	14
3.4.	DISTANCE MEASURES	
3.4.1.	Outlier Detection Method	14
3.4.2	Dot Product Method	15
	Cross Correlation Method.	
<i>5</i> .4.4.	Singular Value Decomposition (SVD) Method	15

3.5.	AGGREGATION METHODS	15	
3.5.1	. Simple Average	16	
3.5.2.	Principal Component Analysis (PCA)	16	
3.5.3.	Probablistic Principal Component Analysis (PPCA)	18	
3.6.	PERFORMANCE MEASUERS	20	
Chapter 4	: Motor Imagery Based BCI	35	
4.1.	Introduction	35	
4.2.	PREPARING THE DATASET	35	
4.3.	CLASSIFICATION METHODS	35	
4.3.1	. Classification In FrequecyDomain	35	
4.3.	1.1. Using Fourier Transform	35	
4	4.3.1.1.1. Effect Of De-Noising Method	37	
4	4.3.1.1.2. Effect Of Windowing In FFT	38	
4	4.3.1.1.3. Effect Of Calculating The Energy On The Accuracy	39	
2	4.3.1.1.4. Effect Of Windowing In Fft And Denoising Together	39	
4.3.	1.2. Using Wavelet Transform.	40	
2	4.3.1.2.1. Effect Of Hilbert Transform	41	
2	4.3.1.2.2. Effect Of Using All Channels In Classification	41	
4.3.2.	Classification In Time Domain	42	
4.3.2	2.1. Effect Of De-Noising Method	43	
4.3.2	2.2. Effect Of Hilbert Transform	43	
4.3.2	2.3. Effect Of Measuring The Energies By Different Norm Measure	43	
4.3.2	2.4. Effect Of Using All Channels In Classification	44	
4.3.3.	Online Classification And Evaluation Using Given Criteria	45	
Chapter 5	: Conclusion and Future Works	48	
5.1.	Conclusion	48	
5.2.	FUTURE WORKS	48	
Appendix	x A: BCI Competition 2003 Dataset III	49	
Appendix	x B: Windowing Functions [43]	51	
Appendix	x C: Wavelet Transform Family	53	
Reference	References		

List of Tables

Table 3.1: Block accuracy results for 5 subjects using PCA for applying: outlier	
detection method, correlation method, dot product method, cross correlation method	1
and singular value decomposition method	17
Table 3.2: Block accuracy results for 5 subjects using PPCA for applying: outlier	
detection method, correlation method, dot product method, cross correlation method	1
and singular value decomposition method	19
Table 3.3: Classifier Model	20
Table 3.4: Block sensitivity results for subject 1 of all distance measures for each	
aggregation methodologies	21
Table 3.5: Block specificity results for subject 1 of all distance measures for each	
aggregation methodologies	21
Table 3.6: Block sensitivity results for subject 2 of all distance measures for each	
aggregation methodologies	23
Table 3.7: Block specificity results for subject 2of all distance measures for each	
aggregation methodologies.	23
Table 3.8: Block sensitivity results for subject 3 of all distance measures for each	
aggregation methodologies.	25
Table 3.9: Block specificity results for subject 3 of all distance measures for each	
aggregation methodologies.	25
Table 3.10: Block sensitivity results for subject 4 of all distance measures for each	
aggregation methodologies.	27
Table 3.11: Block specificity results for subject 4 of all distance measures for each	
aggregation methodologies.	27
Table 3.12: Block sensitivity results for subject 5 of all distance measures for each	
aggregation methodologies.	29
Table 3.13: Block specificity results for subject 5 of all distance measures for each	
aggregation methodologies.	29
Table 3.14: Block accuracy results for subject 1 of all distance measures for each	
aggregation methodologies	31
Table 3.15: Block accuracy results for subject 2 of all distance measures for each	
aggregation methodologies.	31
Table 3.16: Block accuracy results for subject 3 of all distance measures for each	
aggregation methodologies.	32
Table 3.17: Block accuracy results for subject 4 of all distance measures for each	
aggregation methodologies.	
Table 3.18: Block Accuracy results of simple average by the purposed work comparation	
to the previous paper work	33
Table 4.1: The resulting accuracy corresponding to the preparation period	
variation	
Table 4.2: The resulting accuracy corresponding to different values of alpha	37

Table 4.3: The resulting accuracy corresponding to the type of window38
Table 4.4: The resulting accuracy corresponding to the type of window38
Table 4.5: The resulting accuracy corresponding to the type of window and alpha
value39
Table 4.6: The resulting accuracy corresponding to sample wavelets types40
Table 4.7: The resulting accuracy corresponding to sample wavelets types after using
Hilbert Transform41
Table 4.8: the resulting accuracy corresponding to sample wavelets types after using
Hilbert Transform by new classifier41
Table 4.9: The resulting accuracy corresponding to the preparation period variation42
Table 4.10: The resulting accuracy corresponding to different denoising methods43
Table 4.11: The resulting accuracy corresponding to different norm measures43
Table 4.12: Ranking order of purposed unsupervised technique and the BCI
Competition 2003 winning methods together with the methods in [21] in terms of the
MI criterion
Table 4.13: Classification accuracy results (in %) using the proposed unsupervised
technique and the BCI Competition 2003 winning methods together with the methods
in [21] and [40]

List of Figures

Figure 1.1 Basic flowchart and operation of any BCI system [2]
Figure 2.1 Spatial and temporal location of P300 [14] 6
Figure 2.2 Amplitude spectra of SSVEPs induced by 6.83- (thick) and 7.03-Hz (thin)
visual stimulation Motor-related potentials (MRPs) [18]
Figure 2.3 MRP frequencies target and non-target [19]8
Figure 2.4: ERD/ERS activity during the right hand movement in ongoing EEG. After
the cue, the activity of alpha band increases over the right posterior region more than
the left hemisphere [22]8
Figure 2.5 Flow diagram of a BCI System9
Figure 2.6 The P300 Speller [33]11
Figure 3.1 Electrode configurations used in the experiments. From left to right:
Configuration I (4 electrodes), configuration II (8electrodes), configuration III
(16 electrodes), and configuration IV (32 electrodes) [16]14
Figure 3.2 block accuracy for subject 3 by using PPCA method for dot product
1-norm
Figure 3.3 Block accuracy results for subject 1 of all distance measures for each
aggregation methodologies: (a) Average, (b) PCA and (c) PPCA22
Figure 3.4 Block accuracy results for subject 2 of all distance measures for each
aggregation methodologies: (a) Average, (b) PCA and (c) PPCA24
Figure 3.5 Block accuracy results for subject 3 of all distance measures for each
aggregation methodologies: (a) Average, (b) PCA and (c) PPCA26
Figure 3.6 Block accuracy results for subject 4 of all distance measures for each
aggregation methodologies: (a) Average, (b) PCA and (c) PPCA28
Figure 3.7 Block accuracy results for subject 5 of all distance measures for each
aggregation methodologies: (a) Average, (b) PCA and (c) PPCA30
Figure 4.1 Average Channel Fourier Spectra for (a) Left Movement Motor Imagery, (b)
Right Movement Motor Imagery36
Figure 4.2 Average Channel Fourier Spectra at peak accuracy after de-noising by alpha
= 11 for (a) Left Movement Motor Imagery, (b) Right Movement Motor Imagery37
Figure 4.3 wavelet decomposition using DWT with wavelet DB4 for both: (a) Left
Movement Motor Imagery, (b) Right Movement Motor Imagery
Figure 4.4 Average channel signals in time domain for: (a) Left Movement Motor
Imagery, (b) Right Movement Motor Imagery42
Figure 4.5 Channel Energies for both: (a) Left Movement Motor Imagery, (b) Right
Movement Motor Imagery44
Figure 4.6 Time Course of Mutual Information (MI) and Classification Error (ERR)45

Figure 4.7 MI and ERR according to the competition winner's paper;	Γime course of
the classification error (thin solid) and MI (thick solid) [37]	45
Figure A-1 Electrode positions (left) and timing scheme (right)	49

Nomenclature

ALS Amyotrophic Lateral Sclerosis

BCI Brain Computer Interface

BLDA Bayesian Linear Discriminant Analysis

CNV Contingent Negative Variety

EEG Electroencephalography

EMG Electromyography

ER Error Rate

ERD Event Related Desynchronization

ERP Event Related Potential

ERS Event Related Synchronization

FFT Fast Fourier Transform

ISI Inter-Stimulus Interval

MEG Magnetoencephalography

MI Mutual Information

MRI Magnetic Resonance Imaging

MRPs Motor-Related Potentials

PCA Principal Component Analysis

PET Positron Emission Tomography

PPCA Probabilistic Principal Component Analysis

SNR Signal to Noise Ration

SS Spectral Subtraction

SSVEPs Steady-State Visual Evoked Potentials

SVD Singular Value Decomposition

SVM Support Vector Machine

VEP Visual Evoked Potential

Abstract

Brain-Computer Interface (BCI) is man-machine communication system that allows subjects to send commands to computers by using solely their brain activity while not using any peripheral system or muscles. The significant objective of BCI research is to develop systems that let incapacitated users to communicate with different persons, to manage artificial limbs, or communicate with their surroundings.

BCI system comprised of three main parts; preprocessing, feature extraction and classification. The most important stages are feature extraction and preprocessing. In this contribution, the main target is to study the effect of different processing techniques on the accuracy of ERP especially P300 based and motor imagery BCI experiments.

One of the major problems in BCI's application is the difficulty to find response from a single trial. Hence, several trials are performed for each element in order to decrease the error in prediction. This led to longer time before accurately predicting the user intent and need intensive training to the user or the operator who work on that device.

In this thesis we study a new technique for BCI data that requires no earlier training. The new approach is applied to experimental dataset used for "Graz" motor imagery and Hoffmann dataset of P300-based BCI for both healthy and disabled subjects and compared to the classification output results of the same data utilizing the conventional processing techniques requiring earlier training. Regarding P300 based-BCI, The fundamental rule of this new class of unsupervised methodologies is that the trial with true activation signal inside every block must be distinctive from whatever remains of the trials inside that block. Consequently, a measure that is delicate to this difference can be utilized to settle on a choice taking into account a single block with no earlier training. As well, we tend to study different algorithms of aggregating info from many trials to extend communication speed and bit rate. Such aggregation strategies include simple average, PCA and PPCA. The results by averaging, from the sample individual cases show that the proposed technique supported SVD provided the most effective performance reaches 98.61%. Regarding the motor imagery part, we tend to used different classification methodologies as in time and frequency domain. And then we found that wavelet transform get best performance reaches 82.14%. So, these promising results recommend that this approach can reach accuracies not extremely far from those got with training while keeping up robust performance in practice.