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Summary:

In this thesis we study a new technique for BCI data that requires no earlier training.
The new approach is applied to experimental data for motor imagery and P300-based BCI for
both healthy and disabled subjects and compared to the classification output results of the same
data utilizing the conventional processing techniques requiring earlier training. Regarding P300
based-BClI, The fundamental rule of this new class of unsupervised methodologies is that the
trial with true activation signal inside every block must be distinctive from whatever remains of
the trials inside that block. Consequently, a measure that is delicate to this difference can be
utilized to settle on a choice taking into account a single block with no earlier training. As well,
we tend to study different algorithms of aggregating info from many trials to extend
communication speed and bit rate. Such aggregation strategies include simple average, PCA and
PPCA. The results by averaging, from the sample individual cases show that the proposed
technique supported SVD provided the most effective performance reaches 98.61%. Regarding
the motor imagery part, we tend to used different classification methodologies as in time and
frequency domain. And then we found that wavelet transform get best performance reaches
82.14%. So, these promising results recommend that this approach can reach accuracies not
extremely far from those got with training while keeping up robust performance in practice.
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Abstract

Brain-Computer Interface (BCI) is man-machine communication system that
allows subjects to send commands to computers by using solely their brain activity
while not using any peripheral system or muscles. The significant objective of BCI
research is to develop systems that let incapacitated users to communicate with
different persons, to manage artificial limbs, or communicate with their surroundings.

BCI system comprised of three main parts; preprocessing, feature extraction and
classification. The most important stages are feature extraction and preprocessing. In
this contribution, the main target is to study the effect of different processing techniques
on the accuracy of ERP especially P300 based and motor imagery BCI experiments.

One of the major problems in BCI’s application is the difficulty to find response
from a single trial. Hence, several trials are performed for each element in order to
decrease the error in prediction. This led to longer time before accurately predicting the
user intent and need intensive training to the user or the operator who work on that
device.

In this thesis we study a new technique for BCI data that requires no earlier
training. The new approach is applied to experimental dataset used for “Graz” motor
imagery and Hoffmann dataset of P300-based BCI for both healthy and disabled
subjects and compared to the classification output results of the same data utilizing the
conventional processing techniques requiring earlier training. Regarding P300 based-
BCI, The fundamental rule of this new class of unsupervised methodologies is that the
trial with true activation signal inside every block must be distinctive from whatever
remains of the trials inside that block. Consequently, a measure that is delicate to this
difference can be utilized to settle on a choice taking into account a single block with
no earlier training. As well, we tend to study different algorithms of aggregating info
from many trials to extend communication speed and bit rate. Such aggregation
strategies include simple average, PCA and PPCA. The results by averaging, from the
sample individual cases show that the proposed technique supported SVD provided the
most effective performance reaches 98.61%. Regarding the motor imagery part, we
tend to used different classification methodologies as in time and frequency domain.
And then we found that wavelet transform get best performance reaches 82.14%. So,
these promising results recommend that this approach can reach accuracies not
extremely far from those got with training while keeping up robust performance in
practice.
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