

Faculty of Science

Chemistry Department

Synthesis, characterization and analytical applications of some nanoparticles

By

Ziad Fathy Ramadan Abdl Aziz

B. Sc. in Chemistry, Faculty of Science Ain Shams University (2008)

Under supervision of

Prof. Dr. Ashraf Abdel- Aaty Mohamed

Professor of analytical chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Sayed Amin

Professor of physical chemistry, Faculty of Science,

Ain Shams University

Dr. Mohamed sheriff el kotb

Professor of physics, Faculty of Science, Ain Shams University 2018

Synthesis, characterization and analytical applications of some nanoparticles

A Thesis

Submitted to Chemistry Department - Faculty of Science - Ain Shams University in partial fulfillment of the requirements for the degree of Master in Science (Analytical Chemistry)

By

Ziad Fathy Ramadan Abdl Aziz

B. Sc. in Chemistry, Faculty of Science Ain Shams University (2008)

Thesis supervisors

- 1. Prof. Dr. Ashraf Abdel- Aaty Mohamed
 Professor of analytical chemistry,
 Faculty of Science, Ain Shams University

Head of Chemistry Department Prof. Dr. Ibrahim H.A. Badr

.

Faculty of Science
Chemistry Department

Student Name : Ziad Fathy Ramadan Abdl Aziz

Scientific Degree: M. Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year :2008

Granting Year : 2018

ACKNOWLEDGMENT

ACKNOWLEDGMENT

Praise be to Allah, Lord of the worlds, who guided us to the path of faith and patience. All thanks and knowledge are due to my research supervisors prof. Dr. Ashraf Abdel- Aaty Mohamed, Dr. Mohamed Sayed Amin and Dr. Mohamed sheriff el kotb for their steady support and continuous guidance to me through my steps in the path of knowledge to obtain this work in its current form. Also, thanks to the staff in the department of chemistry, Ain-Shams University for their help.

Finally, I would like to thank my dear parents and my wife for taking my hand at hard times in all my life.

Ziad Fathy

Aim of the work

Aim of the work

The aim of this work was to synthesize nano metal oxide to solve some problems of wastewaters treatment by removal of toxic heavy metals, especially chromium and copper in aqueous systems.

The first part of this thesis deals with the synthesis and characterizations of Fe₃O₄, magnetite, Al₂O₃ alumina and Fe₂O₃ hematite as nanoparticles adsorbent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to identify the morphologies and particle sizes.

The second part of this thesis concerned with the effect of different parameters on the adsorption including contact time, initial and final Cr (VI) ion concentration, solution pH, and adsorption kinetics models and Adsorption isotherm

Summery

Summery

The aim of this study was to synthesize some nano metal oxide to solve some problems for the treatment of heavy metals, especially Cr (VI) and Cu (II) in aqueous systems by adsorption method .Alumina, Hematite and magnetite were synthesized by three different methods (sol-gel, forced acid hydrolysis and reverse Coprecipitation) to be used as nano-adsorbent for chromium and copper in aqueous solution

Nano adsorbents were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) to identify the morphologies and particle sizes. (BET) to determine particles surface area and pore average diameter

Analytical Assessment of Cr (VI) and Cu (II) were carried out based on their reaction with 1, 5 diphenylcarbazide (DPC) and 4(2-thiazolylazo) resorcinol respectably, following standard methods for the examination of water and waste water.

Different factors effects on adsorption efficiency were studied such as:

- Contact time
- Adsorbent dose
- pH
- Initial concentration of adsorbate
- Adsorption kinetics
- Adsorption isotherms

Recommended conditions at which nano-adsorbent acts with highly efficiency were obtained.

It is clear from these studies Alumina, Hematite and magnetite can be used as low cost adsorbent for chromium and copper removal from aqueous solution with high efficiency.

List of Contents

List of Contents

Contents

. Background	23
1.1Heavy metals in aquatic solutions	24
1.2 Chromium	27
1.3. Copper	30
1.3.1 Uses of copper	32
1.3.2 Sources of copper contamination	32
1.3.3 Copper toxicity and biochemical effect	33
1.4 Techniques for the removal of heavy metals	33
1.4.1 Solvent extraction	34
1.4.2 Ion exchange	37
1.4.3 Adsorption	38
1.5 The synthesis techniques of Nano metal oxide	41
1.5.1 Chemical precipitation	41
1.5.2 Sol-Gel and forced hydrolysis techniques	42
1.5.3 Hydrothermal technique	43
1.5.4. Surfactant mediated /template synthesis	44
1.5.5. Biomimetic mineralization	44
1.5.6. Precipitation by anhydrous solution	45
1.5.7 Microemulsion technique	45
1.5.8 Flow injection syntheses	46
1.5.9 Electrochemical methods	47
1.5.10 Aerosol/vapor methods	48
1.5.11 Sonochemical technique	50
1.6 Adsorption of metal ions	51
1.6.1 Adsorption isotherms	52
1.6.2 Adsorption kinetic equations	57

2.1 Materials and Methods	61
2.2 Synthesis of metal oxides nanoparticles	62
2.1.1. Synthesis of magnetite nanoparticles by reverse Co-precipitation	62
2.1.2. Synthesis of alumina nanoparticles by sol-gel	64
2.1.3. Synthesis of hematite nanoparticles by force acid hydrolysis	64
2.2 Analytical Assessment of Cr (VI) and Cu (II) as Pollutants	65
2.2.1 Hexavelant chromium	65
2.2.2 Copper	65
2.3 Adsorbent characterization	66
2.3.1 X-ray diffractometer (XRD)	66
2.3.2Transmission electronic microscopy (TEM)	66
2.3.3 Brunauer-Emmett-Teller (BET)	66
2.4 Adsorption Experiments	67
3.1 Adsorbent characterization	70
3.1.1 X-ray diffractometer (XRD)	70
3.1.2Transmission electronic microscopy (TEM)	70
3.1.3 Brunauer-Emmett-Teller (BET)	71
3.2 Effect of contact time	74
3.2.1 Chromium (VI)	75
3.2.2 Copper (II)	75
3.3 Effect of Adsorbent Dose	78
3.2.1 Chromium (VI)	78
3.2.2 Copper (II)	79
3.4 Effect of pH	81
3.4.1 Point of zero charge	81
3.4.2 Chromium (VI)	83
3.4.3 Copper (II)	83
3.5 Effect of initial concentration	86
3.5.1 Chromium (VI)	86
3.5.2 Copper (II)	86

3.7 Kinetic Modeling of the Adsorption of Cr ⁺⁶ and Cu ⁺² on Nano adsorbant	
(Alumina, Hematite and Magnetite)	88
3.7.1 Pseudo-first-Order Model	89
3.7.2 Pseudo-second-Order Model	90
3.7.3 Intra-particle diffusion model	93
3.8 Adsorption isotherm analysis	97
3.8.1 Langmuir isotherm	98
3.8.2 Freundlich Adsorption isotherm	99
3.8.3 Temkin isotherm	103
3.8.4 Dubinin–Radushkevich isotherm model	104
3.7 Comparative Study of the Adsorption Capacity of NAHM and Convention	nal
Adsorbents	111
Conclusions	115
References	118

List of Figures