

بسم الله الرحمن الرحيم

المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المخط هذه الأفلام بعيدا عن الغبار المدرجة حرارة من ١٥-١٥ مئوية ورطوبة نسبية من ٢٠-٠٤% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائيق الاصلية تالفة

بالرسالة صفحات لم ترد بالاصل

Application of AI Techniques in Power System: Modeling and Control

A Thesis Submitted to the Faculty of Engineering "Shoubra"

Zagazig University, Benha Branch

In Partial Fulfillment of the Requirements

For the M.Sc. Degree in Electrical Engineering

(Power Division)

By

Mahmoud Soliman Ahmed Hellal

B.Sc. in Electrical Engineering (2000)

Supervised By

Assoc. Prof. Dr. Atef Azer Ishak

Faculty of engineering "Shoubra" Zagazig University, Benha Branch

Dr. Mohamed Shebl El-Bagas

Faculty of Engineering "Shoubra" Zagazig University, Benha Branch

Dr. Atef Kamel Fad

Faculty of Engineering

Zagazig University, I

July 2004

میا سرابه کر

Application of AI Techniques in Power System Modeling and Control

Presented By

Mahmoud Soliman Ahmed Helaal

The thesis has been approved by the committee of examiners on Monday 2^{nd} August 2004

Inhon Bendary

Examiners Committee

- [1] Prof. Dr. Fahmy Metwally Elbendary
- [2] Prof. Dr. Mohy Eldein Mandour Abd Elhamid
- [3] Assoc. Prof.Dr. Atef Azer Ishak

Acknowledgement

Acknowledgement

"All gratitude is due to God Almighty who guided me and aided me"

It is a pleasure to express my sincere gratitude to my supervisors, primarily Assoc. prof. Dr. Atef Azer Ishak for his encouragement and support throughout out the thesis. My enthusiasm in this subject is inspired by his profound knowledge in this area and this elegant research style. I would like also to thank both Dr. Muhammad Shebl and Dr. Atef kamel for their encouragement and support throughout the thesis.

ABSTARCT

ABSTRACT

This work involves the study of two modifications to improve the dynamic performance of the well-established fuzzy logic based power system stabilizer (FLPSS). A novel fuzzy logic based power system stabilizer with supplementary signal controlled from the generator terminal voltage is presented, for the purpose of enhancing the stability margin of power systems. The suggested stabilizer is termed voltage-controlled fuzzy logic power system stabilizer (VCFLPSS). Also this work involves another modification over the fixed parameter FLPSS through tuning its parameters based on the deviation in the machine terminal voltage to be adaptive in damping enhancement as well as in improving the stability limits of multimachine power systems. The proposed controller is termed self-tuned fuzzy logic stabilizer (STFLPSS). The performance of the suggested controllers is studied through computer simulation for a multimachine power system model when undergoing both minor disturbance and large scale disturbance. A comparative study between FLPSS, VCFLPSS, and STFLPSS is presented to establish the effectiveness of the suggested controllers in damping out power system oscillations as well as in enhancing the power system stability limit.

NOMENCLATURE

Nomenclature

Parameters and variables through out this thesis have the following meanings

ω_r	Rotor speed
ω_s	Synchronous speed
ω_o	Steady state or base speed equal ω_s
v_a , v_b , v_c	Three phase voltages
i_a , i_b , i_c	Three phase currents
i_{fd} , i_{kd} , i_{kq}	Field, d-damper, and q-damper winding currents
Ψα Ψ	Three phase flux likages
x_{aa}, x_{bb}, x_{cc}	The three phase winding self reactances
x_{ab}, x_{ac}	The mutual reactance between phase (a) and phase (b), and c
$x_{afd}, x_{akd}, x_{akq}$	The mutual reactances between phase (a) and field, d-damper,
θ	and q-damper windings respectively The rotor position
N_3 , N_2	The number of turns for the three phase and two phase windings respec
$T_{lphaeta o}$	The transformation matrix from three phase to two phase machine
T_{STR}	The transformation matrix from stationary to rotating axes
V_{BABC}	The base voltage in the three phase machine
V_{BDQ}	The base voltage in the two phase machine
I_{BABC}	The base current in the three phase machine
I_{BDQ}	The base current in the two phase machine
Ψ _{BABC}	The base flux linkage in the three phase machine
Ψ _{BDO}	The base flux linkage in the two phase machine
$\lambda_d, \lambda_q \dots $	The direct and quadrature components of the flux linkages in p.u.
I_{BFD} , I_{BKD} , I_{BKD}	The base current in the field winding, d-damper, q-damper windings
Z_{BDQ}	The base impedance in the armature winding
P _e	Electromagnetic power
δ	The rotor angle
$T_m \dots $	The mechanical torque input
<i>T_{FW}</i>	The friction and windage torque
<i>M</i>	The inertia constant
<i>V</i> _d	Armature d-axis terminal voltage
V_q	: Armature q-axis terminal voltage
I_d	: Armature d-axis terminal current

: Armature q-axis terminal current
: Field winding terminal voltage
: Field winding terminal current
: d-axis damper winding current
q-axis damper winding current
Armature phase resistance
d-axis armature phasè reactance
q-axis armature phase reactance
d-axis mutual reactance
q-axis mutual reactance
Field winding resistance
Field winding reactance
d-axis damper winding resistance
d-axis damper winding reactance
q-axis damper winding resistance
q-axis damper winding reactance
The busbar voltage magnitude and angle
The active and reactive power of the connected loads.
The angle of the impedance connecting bus i and bus k
The rotor angle referred to the center of inertia
The participation factors
Power system stabilizer
Output from PSS
Conventional power system stabilizer
The membership functions
Fuzzy logic control
Fuzzy logic power system stabilizer
Artificial Neural Network
Voltage controlled-Power System Stabilizer.
Voltage-Controlled Fuzzy Power System Stabilizer
Self tuned fuzzy logic power system stabilizer
Low frequency oscillations

CONTENTS

Acknowledgements

	Acknowledgements	i
	Abstract	ii
	Nomenclature	iii
	Contents	v
Chapter 1	Introduction	•
Спарил 1	inti ottaction	1
Chapter 2	Comprehensive study in modeling of electric power system components	5
2.1	Introduction	
2.2	Physical Description of the Synchronous Machine	5 7
2.3	Modeling of Synchronous Machine Electrical Dynamics	8
2.3.1	Synchronous Machine Model in abc Rotating Frame of Reference	9
2.3.2	Formulation of the Machine Model in dqo Rotating Frame of Reference	12
2.3.2.1	Rankin Transformation (Two Reaction Theory)	13
2.3.2.2	Transformation from Two Stationary Axis αβ0 to Two Rotating Axis dgo	14
2.3.2.3	Transformation from abc frame of Reference to doo Rotating frame of Reference	15
2.3.2.4	Selection of an Appropriate Per-Unit System	17
2.3.2.5	Synchronous Machine Model in dqo Frame of Reference	18
2.3.2.6	Synchronous Machine Power in dgo Frame of Reference	20
2.4	Modeling of Synchronous Machine Mechanical Dynamics	21
2.5	Simplified Generator Models Adopted in Power System Literature	22
2.6	Power Transformer Model	26
2.7	Transmission Network Dynamic Model	27
2.8	Capacitive Elements Model	28
2.9	The Voltage Controller Model	20 29
2.10	The Speed Control Loop Model	31
2.11	Study Case	32
Chapter 3	Modeling of Multimachine Power Systems	33
3.1	Introduction	
3.2	Reference Frames for Multimachine Modeling	33
3.3	Transformations to the Synchronously Rotating Frame of Reference	33
3.4	Differential Algebraic Models	34
3.5	Multimachine Full Order Model	36
3.6	Angle Reference and Dynamic Model	43
5.0	Angle Reference and Dynamic Model	46
Chapter 4	Control Techniques Adopted In Electrical Power System Studies	47
4.1	Introduction	47
4.2	Conventional Controllers	49
4.3	Modern Control Theory	52
4.3.1	Optimal Control Theory	52
4.3.2	Adaptive controllers	53
4.3.3	Pole Placement technique	54
4.4	PSS Parameter Tuning Methodologies Adopted in Multimachine Power Systems	54
4.4.1	Eigenvalue Sensitivity	55
4.4.2	Sensitivity of PSS effect (SPE)	56
4.5	Applications of AI Techniques in Power System Control	58
4.5.1	Artificial Intelligence Based Power System Stabilizer	59
4.6	The Novel Configuration Proposed for PSS	61
Chapter 5	Stability Enhancement Using CPSS with Voltage Controlled Supplementary	62
_	Signal	
5.1	Introduction	62
5.2	State Space Representation	63
5.2.1	State Space Model	63
5.2.2	Linearization of System Dynamic Equations	64
5.3	Eigenvalue and Stability Analysis	65
5.3.1	Eigenvectors and Modal Matrices	66
5.3.2	Participation Factors	66
		- 00