DESIGN, PERFORMANCE ANALYSIS, AND MANUFACTURING OF PARABOLIC TROUGH SOLAR COLLECTOR USED FOR THERMAL LOADS

 $\mathbf{B}\mathbf{y}$

Eng. Mohamed Rashed Helmy AbdelMagid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

DESIGN, PERFORMANCE ANALYSIS, AND MANUFACTURING OF PARABOLIC TROUGH SOLAR COLLECTOR USED FOR THERMAL LOADS

By

Eng. Mohamed Rashed Helmy AbdelMagid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

AbdAlla Sayed Hanafi

Professor
in Mechanical Power
Engineering Department.
Faculty of Engineering,
Cairo University.

Hatem Omar Haridy

Assistant Professor in Mechanical Power Engineering Department. Faculty of Engineering, Cairo University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

DESIGN, PERFORMANCE ANALYSIS, AND MANUFACTURING OF PARABOLIC TROUGH SOLAR COLLECTOR USED FOR THERMAL LOADS

By

Eng. Mohamed Rashed Helmy AbdelMagid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining committee

Prof. Dr. Abdalla Sayed Hanafi (Main Advisor and a Member)
Mechanical Power Engineering Dep., Faculty of Engineering, Cairo University

Prof. Dr. Abdel -Wahed El-Dib (Member)
Mechanical Power Engineering Dep., Faculty of Engineering, Cairo University

Prof. Dr. Osama Ezzat Abdellatif (Member)
Mechanical Power Engineering Dep., Faculty of Engineering, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer:** Mohamed Rashed Helmy

Date of Birth: 18/09/1986

Nationality: Egyptian

E-mail: engmohrashed@gmail.com

Address: 6th of October, Giza, Egypt.

Registration Date: 01/10/2011

Awarding Date: / /2015

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Abdalla Sayed Hanafi

Dr. Hatem Omar Haridy

Examiners: Prof. Dr. Abdalla Sayed Hanafi

Prof. Dr. Abdel-Wahed El-Dib

Prof. Dr. Osama Ezzat Abdellatif (Mechanical Power Department, Faculty of Engineering, Benha University)

Thesis Title: DESIGN, PERFORMANCE ANALYSIS, AND MANUFACTURING OF PARABOLIC TROUGH SOLAR COLLECTOR USED FOR THERMAL LOADS.

Keywords: Parabolic trough collector, Intercept factor, Optical efficiency, Shading factor, End loss factor.

Summary: This thesis presents a detailed study on Parabolic Trough Solar Collectors applied with a water desalination unit using a multi-effect distillation technique. Thermal design procedures were implemented to determine the full dimensions of the collector. Then, optical and thermal losses from the collector were investigated taking into consideration the shading effect and the end loss factor. Also, transient thermal performance of the collector was studied throughout the annual seasons. It was found that the best performance will be achieved in May during which the desalination unit can be solar operated for seven hours daily, producing 15 m³/day of distillate water. Finally, the construction, manufacturing, and assembly steps of the parabolic trough collector were introduced.

Acknowledgment

I owe thanks first and foremost to my supervisors; Prof. Abdalla Hanafi and Dr. Hatem Haridy for their effective guidance. Special thanks go to Prof. Abdalla for letting me a part of his solar desalination project team. I'd like to thank all those people who were kind enough to take time out of their busy schedules to help me and answer my questions; specifically Dr. Mahmoud AbdelWahab, Eng. Ahmed Hamed, and Yahia Zakaria.

Lastly, but most important, I would like to give my heartfelt thanks to my parents, my sister, and my wife for offering me the time to work.

Table of Contents:

List	t of Tables	iv
List	t of Figures	V
Nor	menclature	ix
List	t of Abbreviations	xii
Abs	stract	xiii
1.	CHAPTER 1: INTRODUCTION	
	1.1. Potential of solar energy in Egypt	1
	1.2. Solar energy applications	
	1.3. Solar energy for thermal loads	
	1.4. Multi-Effect distillation	
	1.5. Parabolic trough collector	
	1.6. Parabolic trough collector solar tracking system	
	1.7. Thesis outline	7
2.	CHAPTER 2: LITERATURE REVIEW	
	2.1. Introduction	9
	2.2. Optical error analysis	
	2.2.1. Theoretical and experimental studies	11
	2.3. The commercial parabolic trough collectors	16
	2.3.1. Luz collectors	16
	2.3.2. EuroTrough collectors	
	2.4. Effect of parabolic trough orientation	
	2.4.1. Single axis tracking	
	2.4.2. Experimental studies	
	2.5. Incidence angle modifier, Shading, and End losses	
	2.6. Conclusion and scope of work	33

3. **CHAPTER 3: MODELING THE PTC SYSTEM**

5.1.	Introduc	tion	35
3.2.	Sizing th	e Parabolic Trough Collector	37
3.3.		ect layout	
3.4.		rcept factor at normal incidence calculations	
3.5.		mal performance of the PTC	
3.5	5.1. Sola	r irradiance absorption	41
	3.5.1.1.	Weather data	41
	3.5.1.2.	Incidence angle	42
	3.5.1.3.	Incidence angle modifier	42
	3.5.1.4.	Peak optical efficiency	42
	3.5.1.5.	Shading factor	43
	3.5.1.6.	End losses	43
3.5	5.2. Mod	leling the receiver tube thermal losses	44
	3.5.2.1.	Assumptions	44
	3.5.2.2.	Energy balance components	45
3.6.	Modelin	g of the storage tank	53
3.6	5.1. Enei	rgy balance on the storage tank	54
	3.6.1.1.	Storage tank thermal losses	55
3.7.	The pres	ent case study	58
3.7	7.1. Shao	ding effect	58
	3.7.1.1.	Calculating the critical tracking angle	59
	3.7.1.2.	The shading factor	61
3.7	7.2. End	l losses effect	62
3.7	7.3. The	simulation program	64
	3.6.3.1.	Forristall code verification	64
	3.7.3.1.	EES code customization	64
	3.7.3.2.	EES code flow chart	65
4. CHAP	TER 4: R	ESULTS AND DISCUSSION	
4.1.	Introduc	tion	67
4.2.	The inter	rcept factor and concentration ratio	67
4.2	2.1. Geo:	metrical effects on the intercept factor	68
4.3.	The peak	c optical efficiency	70
4.4.		factor	
4.5.		factor	

	4.6. The Parabolic Trough Collector Length	77
	4.7. Overall solar system simulation results	77
5.	CHAPTER 5: DESIGN AND CONSTRUCTION OF	PTC
	5.1. Concentrator Structure	86
	5.1.1. Trough structure assembly	91
	5.1.2. Main supports	94
	5.1.3. The whole structure	97
	5.1.4. Optical testing of the PTC	97
	5.2. Heat collecting element	98
	WORK	
	WORK	
	WORK 6.1. Conclusions	100
R	6.1. Conclusions.	101
A]	6.1. Conclusions 6.2. Recommendations for future work EFERENCES PPENDIX A: Intercept Factor Matlab Code	101102105
A] A]	6.1. Conclusions. 6.2. Recommendations for future work. EFERENCES. PPENDIX A: Intercept Factor Matlab Code. PPENDIX B: Shading Width Matlab Code.	101102105107
A] A] A]	6.1. Conclusions 6.2. Recommendations for future work EFERENCES PPENDIX A: Intercept Factor Matlab Code PPENDIX B: Shading Width Matlab Code PPENDIX C: Thermo-physical Properties of HTF	101102105107109
Al Al Al	6.1. Conclusions. 6.2. Recommendations for future work. EFERENCES. PPENDIX A: Intercept Factor Matlab Code. PPENDIX B: Shading Width Matlab Code. PPENDIX C: Thermo-physical Properties of HTF. PPENDIX D: The properties of the PTSC components	101102105107109110
A] A] A] A]	6.1. Conclusions 6.2. Recommendations for future work EFERENCES PPENDIX A: Intercept Factor Matlab Code PPENDIX B: Shading Width Matlab Code PPENDIX C: Thermo-physical Properties of HTF	101102105107109110113

List of Tables

Table 2.1: Percentage of measurements of flux falling within multiples	
of a given standard deviation. [6]	.13
Table 2.2: Error sets used in optical analysis. [16]	15
Table 2.3: Main Characteristics of the Luz Parabolic Trough Collectors.	.16
Table 2.4: Orientation angle effect on the yearly collection efficiency	27
Table 2.5: IAM for different solar collectors. [21],[22],[23],[24],[25]	.29
Table 3.1: Heat flux definitions. [30]	.45
Table 4.1: Values of the geometric and error parameters	67
Table 4.2: Shade factor results calculated through the annual seasons	.73
Table 4.3: Sample of end loss factor calculations in 1st January	.74
Table 4.4: Number of operating hours and the desalination plant output.	.82

List of Figures

Fig. 1.1: Worldwide annual solar-electric power output per unit collector
area [1]
region [4]
Fig. 1.3: Solar Energy Usage
Fig. 1.4: Schematic diagram of MED
Fig. 1.5: Different MED configurations [5]
Fig. 1.6: Parabolic Trough Collector5
Fig. 1.7: Schematic of photo-sensor tracking
Fig.1.8: Solar tracking module
Fig. 2.1: Description of optical errors associated with PTC [12]10
Fig. 2.2: Solar acceptance angle [13]11
Fig. 2.3: Front and rear views of third generation (LS-3) collector [17].17
Fig. 2.4: Front and rear views of EuroTrough collector [17]18
Fig.2.5: Schematic drawing illustrates the situation of perfect tracking18
Fig. 2.6: Single axis and double axis tracking
Fig. 2.7: North-South and East-West horizontal axis tracking19
Fig.2.8: Direct irradiance for a single axis tracking surface, (47 N latitude,
13 Jul) [18]20
Fig. 2.9: Direct irradiance for a single axis tracking surface, (47 N latitude,
10 Jan) [18]21
Fig. 2.10: Monthly maxima of the direct irradiance on single axis tracked
surfaces [18]
Fig. 2.11: Monthly direct irradiation for single axis tracked surfaces22
Fig. 2.12: Schematic representation of a horizontal PTC with width (w)
and length (l) [19]23
Fig. 2.13: Daily tracking angle variation with the different orientation
angles [19]
Fig. 2.14: Daily incidence angle variation with the different orientation
angles [19]
Fig. 2.15: The relation between IAM and incidence angle for different
collector types [21],[22],[23],[24],[25]
Fig. 2.16: IAM versus incidence angle [26]
Fig. 2.17: The shading effect
Fig. 2.18: Shading effect through the day [27]

Fig. 5.2: 3D model of the torque tube structure with the parabolic ribs and	d
the supporting longitudinal bars assembled8	8
Fig.5.3: The used laser cutting machine	9
Fig. 5.4: The parabolic rib. a) The assembled rib, b) The connection	
between the two parts, c) Exploded view of the assembly point, and d) Th	e
location of the supporting longitudinal bar9	0
Fig.5.5: The PTC structure	1
Fig. 5.6: The longitudinal bars 9	1
Fig. 5.7: Fixation of the longitudinal bar with the parabolic rib9	2
Fig. 5.8: Al. sheets Installation on the ribs	
Fig. 5.9: Fixation of Al. sheet with the bar9	
Fig. 5.10: View from inside the hollow longitudinal bar9	
Fig. 5.11: Fixation points of the Al. sheet with the longitudinal bars9	
Fig. 5.12: The concentrator structure as well as the bases of the receive	
tube supports9	3
Fig. 5.13: The concentrator structure in site	
Fig. 5.14: The three concrete bases supporting the pylons9	
Fig. 5.15: The three bases aligned with the N-S axis orientation9	
Fig. 5.16: One of the four structure main supports9	
Fig. 5.17: The upper loading base of the ball bearing assembly with th	
main support9	
Fig. 5.18: The ball bearings with the driving shaft9	6
Fig. 5.19: The spacing between the two units where the trackin	
mechanism will be installed	_
Fig. 5.20: The two units of the PTC with N-S axis orientation9	7
Fig. 5.21: The reflected rays on the receiver tube nearly at noon98	
Fig. 5.22: The reflected rays on the receiver tube afternoon and before th	e
sunset	
Fig. 5.23: The absorber tube with the glass glazing, metal bellow, and th	e
getter	

Nomenclature

Symbol	Quantity
$A_{aperture}$	Aperture Area, m ²
a	Accommodation Coefficient
b	Interaction Coefficient
c	Specific Heat, kJ/kg.K
C	Concentration Ratio
D	Receiver Diameter
d_D	Distance between the two units
d_r	Displacement of the receiver from the focus
d*	Universal non-random error due to receiver dislocation
f	Focal Length
f	Friction Factor
h	Heat Transfer Coefficient, W/m ² .K
k	Thermal Conductivity, W/m.K
$k(\theta)$	Incidence Angle Modifier
L	Collector Length, m
1	Un-illuminated Length of the receiver, m
l_{win}	Illuminated length of the second receiver, m
m	Oil mass, kg
n	Day number of the year
Nu	Nusselt Number
Pr	Prandtl number
$\dot{Q}_{ m absorbed}$	Solar irradiance absorbed by the receiver tube, W/m ²
$\dot{Q}_{heatloss}$	Solar irradiance loss by the receiver tube, W/m ²
$\dot{Q}_{ m Load}$	The steam generator load, W
$\dot{Q}_{ m useful}$	The useful energy carried by the heat transfer fluid, W
q' _{12conv}	Heat flux by convection from the receiver to the HTF, W/m

q'_{23cond} Heat flux by conduction in the receiver tube, W/m

q'_{3SolAbs} Heat flux absorbed by the receiver tube, W/m

q'_{34conv} Heat flux by convection from the receiver to the glazing, W/m

q'_{34rad} Heat flux by radiation from the receiver to the glazing, W/m

q'_{45cond} Heat flux by conduction in the glass glazing, W/m

q'_{5SolAbs} Heat flux absorbed by the glass glazing, W/m

q'_{56conv} Heat flux by convection from the glazing to ambient, W/m

q'_{57rad} Heat flux by radiation from the glazing to the sky, W/m

q'cond,bracket Heat flux loss in the supporting brackets, W/m

q'heatloss Heat flux loss from the receiver tube, W/m

Ra Rayleigh Number

Re Reynolds Number

t Time, hrs

T Temperature, K

T₆ Ambient Temperature, K

T₇ Effective Sky Temperature, K

U Overall Heat Transfer Coefficient, W/m².K

W Total Aperture Width, m

W_{eff} Un-shaded Aperture Width, m

X Shading Width, m

Greek Letters

 $\Phi_{\rm r}$ Rim Angle

Φ Latitude angle

б Stefan-Boltzmann constant

σ Standard deviation of random errors

 σ^* Universal parameter for random errors

β Tracking angle error

β* Universal parameter for tracking error

γ Intercept Factor

θ Incidence Angle

δ	Declination angle
ω	Hour angle
γ_{s}	Solar azimuth angle
Ψ	Orientation angle
ζ	Tracking angle
ρ	Mirror reflectivity
τ	Glazing transmisivity
α	Receiver absorbtivity
η_{o}	Optical efficiency

Emissivity

ε