

A Simplified Flexible Pavement Structure Design Method Based on Mathematical Model

A Thesis

Submitted to the Faculty of Engineering
Ain Shams University for the Fulfillment
of the Requirement of M. Sc. Degree in Civil Engineering
(Highway and Traffic Engineering)

Prepared by AHMED ATEF MOHAMED

B.Sc. in Civil Engineering, June 2009 Faculty of Engineering, Ain Shams University

Supervisors Prof. Eissa Abd Allah Sarhan,

Professor of Highway and Airport Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Prof. Khaled Anwar Kandil,

Professor of Highway and Airport Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. Hamdy El-Sayed Mohamed

Lecturer Doctor of Highway and Airport Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

A Simplified Flexible Pavement Structure Design Method Based on Mathematical Model

A Thesis For
The M. Sc. Degree in Civil Engineering
(Highway and Traffic Engineering)

by

AHMED ATEF MOHAMED

B.Sc. in Civil Engineering, June 2009 Faculty of Engineering, Ain Shams University

THESES APPROVAL

EXAMINERS COMMITTEE

Prof. Layla Salah Eldein Radwan

Professor of Highway and Airport Engineering Faculty of Engineering, Cairo University.

Prof. Eissa Abd Allah Sarhan

Professor of Highway and Airport Engineering Faculty of Engineering, Ain Shams University.

Prof. Hassan Abd Elzaher Mahdy

Professor of Highway and Traffic Engineering Faculty of Engineering, Ain Shams University.

Prof. Khaled Anwar Kandil

Professor of Highway and Airport Engineering Faculty of Engineering, Ain Shams University.

SIGNATURE

Date: / 2014

Statement

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M. Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from 2010 to 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date:	/ / 2014
Signature:	

Name: Ahmed Atef Mohamed

Acknowledgement

First of all, I want to thank Allah for helping me to complete this work successfully. Then, I want to thank my supervisors for their help and advice, despite their busy schedules. I am proud to complete this thesis under their supervision. I want to thank Prof. Eissa Abd Allah Sarhan for his caring and advices. I want also to thank Prof. Khaled Kandil for his instructions and encouragement. I would like also to give a special thanks to Dr. Hamdy El-Sayed, for support, inspiration, and patience on my questions. I would like to thank prof. Osama Okail as he suggested this point of research. Finally, I would like to thank Prof. Hassan Mahdy for his great encouragement and support.

I would like to thank the head of the Public Works Department and all my colleagues for their support.

I will not forget the effort and the help of my dear friend, Eng. Ahmed Nassar for his great help in software programming which saved a lot of time.

I dedicate this effort to my wife, parents, my sister, my brothers, and of course for my little daughter. I also dedicate this thesis to my professors and colleagues. I also dedicate this thesis for my lovely country, Egypt.

ABSTRACT

The main objective of this research is to develop a simplified flexible pavement structure design method based on mathematical model depending on Egyptian available material and environmental conditions. There are several methods for pavement design used around the world. These methods could be classified into empirical methods or mechanistic-empirical methods. Empirical methods are not accurate and always depend on local conditions for material, traffic, and environment. Mechanistic methods are complicated to use.

In order to reach the main objective of this research, Egypt has been geographically divided into four zones based on temperature conditions during the year. First zone represents the northern of Egypt. Alexandria has been taken to represent this zone. Cairo has been taken to represent the second zone which is the middle of Egypt. The third zone is the southern Egypt and it is represented by Aswan. Finally, Sinai has been taken to represent the fourth zone which is the eastern of Egypt. Air temperature have been collected for the last five years for each city and converted to Asphalt temperature.

Layered elastic theory have been used to determine the maximum tensile strain at the bottom of asphalt layer and the maximum compressive strain at the top of subgrade layer for a group of pavement sections for each zone mentioned above. Sections were proposed based on Egyptian material characteristics and common used pavement sections. KENPAVE software has been used to determine tensile and compressive strains under a dual single axle load of 18klb weight at 36 points. These strains have been used to determine the allowable number of repetitions causing fatigue and rutting failure using Asphalt Institute models.

Mathematical models have been developed and ready to be used to determine the allowable number of repetitions. SGroup of tables have been also developed for flexible pavement design in Egypt. Balanced sections are determined from the output data. Balancing concept means that the pavement structure reaches both fatigue failure and rutting failure at the same time. Section is assumed to be balanced if the ratio between allowable number of repetitions causing fatigue and rutting is more than 90%. Balanced sections economically are recommended sections to be used in pavement design. So, similar tables for design have been developed based only on balanced sections.

Finally, a comparison between this method and the design method used in the Egyptian Code for Highway Design and Construction has been held. The used method in the Egyptian Code is the American Association of State Highway and Transportation Officials (AASHTO 1993). The AASHTO93 flexible pavement design method is a mechanistic-empirical method. The service road of the ring road in Cairo has been taken as a case study for this research. Flexible pavement section for this road has been designed based on AASHTO93 flexible pavement design method. The section has been evaluated using simplified flexible pavement design method.

KEY WORDS:

Flexible Pavement Design, KENPAVE, Layered Elastic Theory, Egyptian Catalogue for flexible pavement design.

TABLE OF CONTENTS

ABSTRACT	
TABLE OF CONTENTS	iii
LIST OF TABLES	
LIST OF FIGURES	V11
1. INTRODUCTION	
1.1 Introduction	
1.2 Research Objectives	
1.3 Research Plan	
1.4 Thesis Structure	4
2. LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Flexible Pavement Section Components	
2.2.1 Surface Course (Bound Material)	
2.2.2 Base and Subbase Course (Unbound Material)	
2.2.3 Subgrade	
2.3 Flexible Pavement Design Theories	
2.3.1 Empirical Methods	
2.3.1.1 California Bearing Ratio (CBR) Method	
2.3.1.2 Group Index (GI) Method	11
2.3.1.3 Other Methods	
2.3.1.5 AASHTO 80 Method	
2.3.2 Mechanistic-Empirical Methods	
2.3.2.1 Elastic layer theory	
2.3.2.2 Visco-elastic analysis	
2.3.2.3 Finite-element techniques	
2.3.2.4 Failure Criteria in mechanistic analysis	
2.3.2.5 Asphalt Institute Design Method	
2.3.2.6 Other models for failure modes	
2.3.2.7 AASHTO 2008	39
2.3.3 Catalogs of Pavement Design	
2.3.3.1 UK Design Method	
2.3.3.2 French Design Method	
2.3.3.3 Australian Design Method	
3. DATA COLLECTION AND DATA INPUT	
3.1 Introduction	
3.2 Mechanistic- Empirical Analysis	62

3.2.1 Traffic	63
3.2.2 Environment	71
3.2.3 Material Properties	75
3.2.4 Performance Models and Criteria	80
3.2.5 Additional Considerations	81
3.3 AASHTO 93 Data	82
3.3.1 Traffic	82
3.3.2 Material Properties	83
3.3.3 Environmental Effects	85
3.3.4 Reliability	86
3.3.5 Additional Considerations	86
4. DATA ANALYSIS	87
4.1 Introduction	87
4.2 Mechanistic-Empirical Outputs and analyses	89
4.2.1 KENPAVE Output Files	89
4.2.2 Modes of Failure	
4.2.3 Egyptian Catalogue	100
4.2.3.1 Introduction	
4.2.3.2 Suggested Pavement sections for Each Zone	101
4.2.4 Balanced Sections Concept	111
4.2.5 Effect of Design Parameters on Pavement Performance	119
4.3 AASHTO 93 Outputs and Analyses	
4.3.1 AASHTO 93 Outputs	126
4.3.2 AASHTO 93Analyses	127
4.4 Case Study	131
5. SUMMARY AND RECOMMENDATIONS	134
5.1 Summary	134
5.2 Conclosion	136
5.3 Recommendations	
References	
APPENDIX I	

LIST OF TABLES

Table (2-1) Recommended m_i values
Table (2-2) Suggested Levels of Reliability and Standard deviation
for various functional classifications
Table (2-3) Standard Normal Deviation (Z_R) Values
Corresponding to Selected Levels of Reliability (R %)
Table (2-4) Fatigue Distress Models
Table (2-5) Rutting Distress Model
Table (2-6) Recommended design criteria for flexible pavements
43
Table (3-1): Trucks classification and specifications in Egyptian
roads
Table (3-2): Measured inflation tire pressure for different truck
types on Egyptian roads
Table (3-3): Equivalency factors variation with tire pressure and
axle loads (single axle)
Table (3-4): Equivalency factors variation with tire pressure and
axle loads (Tandem axle)
Table (3-5): Equivalency factors for single axle loads
Table (3-6): Equivalency factors for tandem axle loads
Table (3-7) Collected maximum average temperature data for
Egypt for last five years
Table (3-8) CBR values corresponding to used modulus of
elasticity
Table (3-9) Asphalt layer coefficient corresponding elastic
modulus
Table (3-10) Base layer coefficient corresponding resilient modulus
Table (4-1) sample from output files and calculations
Table (4-2) sections achieving minimum and maximum strains 97
Table (4-2) Maximum and minimum absolute values for each
zone
Table (4-4) suggested pavement sections for each zone 102
Table (T-T) suggested pavellette sections for each zone 102

Table (4-5) suggested pavement sections for each zone based of	on
the Egyptian Code1	.07
Table (4-6): coefficients and R^2 value for equation (4-3) 1	.09
Table (4-7) a group of balanced sections	12
Table (4-8) Suggested pavement balanced sections for each zo	ne
	.15
Table (4-10) Allowable number of repetitions for sections M-7	7_
18-45-60-15 and M-8.5-16-39-60-15	32

LIST OF FIGURES

Figure (2-1) flexible and rigid pavement6
Figure (2-2) flexible pavement section components
Figure (2-3) Loap 5 and 6 AASHTO Road Test Layout 14
Figure (2-4) Concept of pavement performance using present
serviceability index (PSI)
Figure (2-5) Correlations between structural layer coefficient a3
and various strength and stiffness parameters for unbound
granular subbases
Figure (2-6) Correlations between structural layer coefficient a2
and various strength and stiffness parameters for cement-treated
granular bases
Figure (2-7) Correlations between structural layer coefficient a2
and various strength and stiffness parameters for bituminous-
treated granular bases21
Figure (2-8) Correlations between structural layer coefficient a2
and various strength and stiffness parameters for unbound
granular bases
Figure (2-9) Chart for estimating structural layer coefficient (a1)
of dense-graded asphalt concrete based on the elastic (resilient)
modulus
Figure (2-10) Chart for estimating effective soil resilient modulus
for flexible pavement design
Figure (2-11) Inputs relate to a layered elastic model of pavement
system31
Figure (2-12) Critical analysis locations in a pavement structure32
Figure (2-13) Spread of wheel load pressure through pavement
structure
Figure (2-14) Conceptual Flow Chart of the Three-Stage
Design/Analysis Process for the MEPDG42
Figure (2-15) Flexible Pavement Layout
Figure (2-16) Subbase Thickness Design f for Class 2 foundation
Figure (2-17) Design Thickness of Flexible Pavement

Figure (2-18) Standard Axle loading using the Austroads
Pavement Design Model for Mechanistic Design of Flexible
Pavements
Figure (3-1): Response location and tire characteristics63
Figure (3-2): Egypt predicted maximum temperature from 2010
to 2040 for August71
Figure (3-3): Egypt four zones depending on average temperature
Figure (3-4) Asphalt Elasticity modulus corresponding to
Marshall Stability77
Figure (3-5) Equivalent layer thickness and effective elasticity
determination
Figure (4-1) General steps for flexible pavement design 88
Figure (4-2) Pavement Structure Code terms definition89
Figure (4-3) Output File Example for Lower Zone for One
Period91
Figure (4-4) Effect of subgrade resilient modulus on horizontal
tensile strain
Figure (4-5) effect of subgrade resilient modulus on vertical
compressive strain
Figure (4-6) effect of base resilient modulus on vertical
compressive strain
Figure (4-7) effect of base resilient modulus on horizontal tensile
strain
Figure (4-8) effect of Asphalt layer thickness on horizontal tensile
strain
Figure (4-9) effect of Asphalt layer thickness on vertical
compressive strain
Figure (4-10) effect of base thickness on vertical compressive
strain
Figure (4-11) effect of base thickness on horizontal tensile strain
Figure (4-12) effect of asphalt layer elasticity modulus on
horizontal tensile strain
Figure (4-13) effect of asphalt layer elasticity modulus on vertical
compressive strain

number of repetitions	Figure (4-14) effect of subgrade resilient modulus on allowa	ıble
allowable number of repetitions	number of repetitions	128
Figure (4-16) effect of base resilient modulus on allowable number of repetitions	Figure (4-15) effect of asphalt layer elasticity modulus on	
number of repetitions	allowable number of repetitions	129
Figure (4-17) effect of base thickness on allowable number of	Figure (4-16) effect of base resilient modulus on allowable	
	number of repetitions	130
repetitions131	Figure (4-17) effect of base thickness on allowable number	of
	repetitions	131

1. INTRODUCTION

1.1 Introduction

A highway pavement is a structure consisting of superimposed layers of processed materials above the natural soil subgrade. The main functions of pavement are to distribute the applied vehicle loads to the subgrade, to provide a good surface rideability and to provide an adequate skid resistance. The main two types that can meet the above mentioned functions are flexible pavements and rigid pavements.

Highway pavement is probably the most complex structure designed by engineers. This is because the structure layered form is unique as the layers are of different materials and none of the materials are linear elastic. In view of the aforementioned complexity, primitive pavement design methods are empirical, having evolved from the experience gained from constructing pavements, observing their performance and developing the design procedure based on this observed performance structural forms and materials which did not perform satisfactorily.

During World War II, aero planes rapidly became larger and heavier in order to be able to carry heavy bombs. Thus, it became necessary to build stronger pavements. Similar problems emerged on highway networks after the huge industrial evolution. Hence, there was a need to design pavements which will perform with increased efficiency for conditions beyond precious experience. The way to have a reliable flexible pavement design is to relate the pavement performance in the field with a theory of material that can predict the material behavior as a function of the material characteristics. This type of design is called mechanistic-empirical pavement design method.