"Histological and Immunohistochemical study on the possible role of suramin in the healing of experimentally induced laceration of skeletal muscle"

Thesis

Submitted for Partial Fulfillment of the M.D. Degree in Histology

By

Waleed Mohammad El-Sherbiny El-Helaly

M.SC.

Faculty of Medicine – Misr University for Science and Technology (MUST)

Under the Supervision of

Professor Dr. Naglaa Medhat Ibrahim Abou-Rabia

Professor of Histology Faculty of Medicine Ain shams University

Professor Dr. Dina Mohammad Radwan

Professor of Histology
Faculty of Medicine
Cairo University

Dr. Lamiaa Ibrahim Abd-Elfattah

Assistant Professor of Histology Faculty of Medicine Cairo University

Cairo University
2014

ACKNOWLEDGMENT

I am not only deeply indebted to Professor Dr. Naglaa Medhat Abou-Rabia (professor of histology at Ain Shams University) for suggesting, planning and supervising this work, but also grateful for her continuous scientific guidance, sustained support and encouragement throughout this work.

I would like to express my deepest gratitude to Professor Dr. Dina Mohammad Radwan (professor of histology at Cairo University) for her directions, great support, accuracy and valuable suggestions throughout this study.

I would like to convey my sincere appreciation to Dr. Lamiaa Ibrahim Abdel-Fattah (assistant professor of histology at Cairo University) for her useful scientific help and advice which enabled me to complete this work.

List of Contents

1. I	Introduction and aim of work	1
2. F	Review of literature:	3
•	★ The skeletal muscle.	3
	• Skeletal muscle development (myogenesis)	3
	Adult skeletal muscle characteristics	5
	Mechanism of skeletal muscle contraction	13
	• Types of muscle contractions	14
•	Muscle injuries	16
	• Types of skeletal muscle injuries.	16
	• The patho-biology of muscle injuries	17
	Vascularization of the injured muscle	24
	• Regeneration of the intramuscular nerves	25
	• Regeneration of the skeletal muscle in relation to age	25
	Clinical classification of muscle injuries	25
	• Diagnosis of muscle injuries.	26
	• Treatment principles of muscle injuries.	27
	❖ <u>Satellite cells</u>	32
	Adult muscle stem cells	32
	• Identification of muscle satellite cells	32
	Embryonic origin of muscle satellite cells	33
	Dynamics of muscle satellite cells	34
	Multipotentiality of muscle satellite cells	34
	• Satellite cells in muscle repair.	35
	❖ Regulation of skeletal muscle regeneration	38
	The satellite cell niche	38

• Growth factors	39
❖ Vimentin and suramin.	46
3. Material and methods	50
4. Results.	60
5. Discussion.	164
6. Summary and conclusion	
7. Recommendations	179
8. References	180
9. Arabic summary	

List of Abbreviations

α-SMA	Alpha smooth muscle actin
A bands	Anisotropic bands
ab	Abjunctional stump
ad	Adjunctional stump
BM	Basal membrane
BMPs	Bone morphogenetic proteins
cz	Central zone
DG	Dystroglycans
ECM	Extracellular connective tissue matrix
FDA	Food and drug administration
FGF	Fibroblast growth factor
FGF-2 and -6	Fibroblast growth factor-2 and 6
GFAP	Glial fibrillary acidic protein
GM	Gastrocnemius muscle
н&Е	Hematoxylin and eosin
HGF	Hepatocyte growth factor
I bands	Isotropic bands
IF	Intermediate filament
IFP	Intermediate filament protein
IGF	Insulin-like growth factor
INF-γ	Interferon gamma

MCK	Muscle creatine kinase
MCN	Myocyte nucleus
MDSCs	Muscle-derived stem cells
МНС	Myosin heavy chain
MMP-2 and -9	Matrix metalloproteinases-2 and -9
MRFs	Myogenic regulatory factors
MSTN	Myostatin
MTJs	Myotendinous junctions
MYF5	Myogenic factor 5 protien
MYOD	Myogenic differentiation protien
NMJs	Neuromuscular junctions
NSAIDs	Non-steroidal anti inflammatory drugs
Pax3	Paired box 3 gene
Pax7	Paired box 7 gene
PBS	Phosphate buffered saline
PDGF-AA and BB	Platelet-derived growth factor-AA and –BB
RICE	Rest, ice, compression and elevation principle
rz	Regeneration zone
SCs	Satellite cells
SG	Sarcoglycans
SHH	Sonic hedgehog protien
SP cells	Side population cells

SR	Sarcoplasmic reticulum
SYN	Syntrophins
SZ	Survival zone
T tubules	Transverse tubules
TGF-a	Transforming growth factor-α
TGF-β1	Transforming growth factor–β1
TN-C	Tenascin-C
V phenotype	Vimentin phenotype
VAD phenotype	Vimentin, α -SMA, and desmin phenotype
VADM phenotype	Vimentin, α -SMA, desmin and myosin heavy chains phenotype
VD phenotype	Vimentin and desmin phenotype
VEGF	Vascular endothelial growth factor
WNTS	Wingless/integrated protien

List of Diagrams

Diagram (1)	A schematic presentation of a 4-week old human embryo showing somites3	
Diagram (2)	A schematic presentation showing the maturation and compartmentalization of	
	somites	
Diagram (3A,B)	A schematic presentation showing the signaling factors and cellular events	
	involved in embryonic skeletal muscle formation	
Diagram (4)	Schematic drawing of the structural design of skeletal muscle	
Diagram (5)	A schematic presentation of myofiber-extracellular matrix (ECM) adhesion7	
Diagram (6)	Schematic presentation of the T-tubules and sarcoplasmic reticulum9	
Diagram (7)	A schematic presentation & an electron micrograph of the myofibril showing its	
	different zone	
Diagram (8A,B)	A schematic presentation for a cross view in the different zones of a myofibril1	
Diagram (9)	A schematic presentation of the molecular structure of the myofilaments	
Diagram (10)	A schematic presentation for the mechanism of skeletal muscle contraction 13	
Diagram (11)	A schematic presentation of the sliding filament model of contraction in the three	
	different types of muscle contraction	
Diagram (12)	A schematic presentation of a shearing injury of skeletal muscle	
Diagram (13)	A schematic illustration of the healing skeletal muscle at different times	
Diagram (14)	A schematic presentation of symmetric and asymmetric division of satellite	
	cells	
Diagram (15)	A schematic presentation of the satellite cell niche and regulatory factors38	
Diagram (16)	A schematic presentation showing the (TGF)-β pathway	
Diagram (17)	A schematic presentation of an IF coiled-coil dimer as exemplified by vimentin 40	

List of Figures

Fig 1	Laceration injury model	53
Fig 2 (A,B)	Gastrocnemius muscle excision.	54
Fig 3	Photomicrograph showing fibroblasts strongly positive for vimentin,	
	skeletal muscle fibers are negative for vimentin	58
Fig 4 (A,B,C)	Group I→H&E	63,65
Fig 5 (A,B)	Group $I\rightarrow M.T.$	67
Fig 6 (A,B)	Group I→Anti-vimentin	69
Fig 7 (A,B,C)	Group II→H&E	73,75
Fig 8 (A,B)	Group II→M.T	77
Fig 9 (A,B)	Group II→Anti-vimentin	79
Fig 10 (A,B,C)	Group IIIA→H&E	83,85
Fig 11 (A,B)	Group IIIA→M.T	87
Fig 12 (A,B)	Group IIIA→Anti-vimentin	89
Fig 13 (A,B,C)	Group IIIB→H&E	93,95
Fig 14 (A,B)	Group IIIB→M.T	97
Fig 15 (A,B)	Group IIIB→Anti-vimentin	99
Fig 16 (A,B,C)	Group IIIC→H&E	103,105
Fig 17 (A,B)	Group IIIC→M.T	107
Fig 18 (A,B)	Group IIIC→Anti-vimentin	109
Fig 19 (A,B,C)	Group IVA→H&E	113,115
Fig 20 (A,B)	Group IVA→M.T	117
Fig 21 (A,B)	Group IVA→Anti-vimentin	119
Fig 22 (A,B,C)	Group IVB→H&E	123,125
Fig 23 (A,B)	Group IVB→M.T	127
Fig 24 (A,B)	Group IVB→Anti-vimentin	129

List of Tables

Table 1:	Key growth factors regulating skeletal muscle regeneration	42
Table 2:	Method of preparing the anesthetic cocktail	52
Table 3:	Results of post hoc comparisons of Group II&V versus Group	143
Table 4:	Results of post hoc comparisons of Group II&V versus Group III A	144
Table 5:	Results of post hoc comparisons of Group II&V versus Group III B	145
Table 6:	Results of post hoc comparisons of Group II&V versus Group III C	146
Table 7:	Results of post hoc comparisons of Group II&V versus Group IV A	147
Table 8:	Results of post hoc comparisons of Group II&V versus Group IV B	148
Table 9:	Results of post hoc comparisons of Group III A versus Group III B	149
Table 10:	Results of post hoc comparisons of Group III A versus Group III C	150
Table 11:	Results of post hoc comparisons of Group III A versus Group IV A	151
Table 12:	Results of post hoc comparisons of Group III A versus Group IV B	152
Table 13:	Results of post hoc comparisons of Group III A versus Group	153
Table 14:	Results of post hoc comparisons of Group III B versus Group III C	154
Table 15:	Results of post hoc comparisons of Group III B versus IV A	155
Table 16:	Results of post hoc comparisons of Group III B versus IV B	156
Table 17:	Results of post hoc comparisons of Group III B versus Group	157
Table 18:	Results of post hoc comparisons of Group III C versus Group IV A	158
Table 19:	Results of post hoc comparisons of Group III C versus Group IV B	159
Table 20:	Results of post hoc comparisons of Group III C versus Group	160
Table 21:	Results of post hoc comparisons of Group IV A versus Group IV B	161
Table 22:	Results of post hoc comparisons of Group IV A versus Group	162
Table 23:	Results of post hoc comparisons of Group IV B versus Group	163

List of Histograms

Histogram 1:	Box plot showing number of centro-nucleated fibers in the seven studied	
	groups	137
Histogram 2:	Box plot showing diameter of centro-nucleated fibers in the seven studied	
	groups	138
Histogram 3:	Box plot showing area of collagen fibers in the seven studied groups	.139
Histogram 4:	Box plot showing area percent of collagen fibers in the seven studied groups	140
Histogram 5:	Box plot showing vimentin immuno-stained area in the seven studied groups	141
Histogram 6:	Box plot showing percentage of vimentin immuno-stained area in the seven	
	studied groups	.142

Abstract

Background:

Skeletal muscle injuries are one of the most frequently occurring injuries in sports medicine. Although these injuries are capable of healing, incomplete functional recovery often occurs due to excessive scar tissue formation.

Hypothesis:

Suramin enhances muscle healing by both stimulating muscle regeneration and preventing fibrosis in lacerated skeletal muscle.

Study Design:

Controlled laboratory study.

Methods:

In vivo: a single concentration of suramin was injected in the gastrocenimus muscle of mice at variable timing after muscle laceration injury. Muscle regeneration and scar tissue formation were evaluated by histologic and immunohistochemical analysis.

Results:

Suramin treatment significantly promoted muscle regeneration, decreased fibrosis formation when introduced after laceration injury.

Conclusion:

Intramuscular injection of suramin after a laceration injury in a multiple dose manner improved overall skeletal muscle healing in comparison to single dose administration

Clinical Relevance:

These findings could contribute to the development of biological treatments to aid in muscle healing after experiencing a muscle injury.

Keywords:

Muscle laceration injury, Suramin, TGFβ1, Myostatin, Muscle regeneration, Fibrosis

Introduction

Skeletal muscle injuries, including contusion, strain, or laceration, are the most common injuries occurring in sports, with an incidence varying from 10% to 55% of all the sustained injuries (Beiner and Joki, 2001). The healing of an injured skeletal muscle follows a fairly constant pattern irrespective of the underlying cause, such pattern has been described to occur in three phases:1. Destruction phase: characterized by the rupture and consequent necrosis of the myofibers, the formation of a hematoma between the ruptured muscles stumps and the inflammatory cell reaction, 2. Repair phase: consisting of the phagocytosis of the necrotized tissue, the regeneration of the myofibers, and the concomitant capillary ingrowth, as well as the production of a connective tissue scar into the injured area; 3. Remodeling phase: a period during which the maturation of the regenerated myofibers, the contraction and reorganization of the scar tissue, and the recovery of the functional capacity of the muscle occur. The latter two phases, repair and remodeling, are usually closely associated or overlapping(Järvinen et al., 2005).

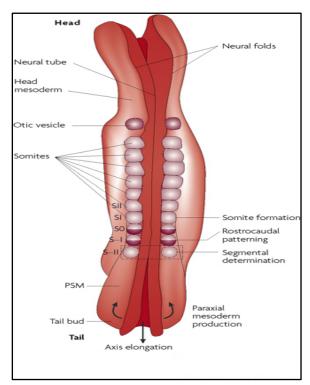
However, the healing process is slow and often incomplete because of the over deposition of collagen leading to significant fibrous scarring that frequently results in functional and structural deficits, contraction injury, muscle atrophy and pain. Therefore a major concern of researchers is how to improve the healing process in the direction of minimizing scar formation in order to overcome these complications (**Huard et al., 2002**).

Growth factors are small peptides that bind to membrane receptors to influence the various steps of the growth and development of cells through several signaling pathways (Menetrey et al., 2000). A large number of growth factors and cytokines are known to be expressed in the injured skeletal muscle, such as the members of fibroblast growth factor(FGF), insulin-like growth factor(IGF), and transforming growth factor $-\beta 1$ (TGF- $\beta 1$) families (Bunn et al., 2004).

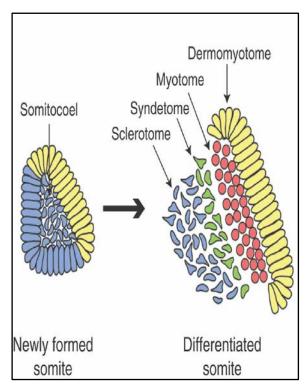
Some of them are powerful stimulators for myogenic precursor cells differentiation and the later fusion of myotubes into multinucleated mature myofibers during the regeneration process, while others such as $(TGF-\beta 1)$ are inhibitory for both differentiation and fusion of myoblasts (Menetrey et al., 2000).

Many authors reported that the overproduction of (TGF- β 1) in response to injury and disease triggers fibrosis via the activation of extracellular matrix production and connective tissue proliferation both in animals and humans (Li et al., 2004).

In light of the apparent role of $TGF-\beta 1$ in skeletal muscle fibrosis, Li and Haurd (2002) succeeded to improve muscle structure and function by the direct injection of the $TGF-\beta 1$ antagonists, as decorin and gamma interferon, into the lacerated muscle blocking its fibrotic effect. However side effects are usually observed with gamma interferon, also decorin is not a clinically available drug. Suramin is a food and drug administration (FDA) approved drug that appears to be a readily available medication, since it has anti fibrotic properties, as it prevents $TGF-\beta 1$ from initiating its effect on the fibroblasts by competitively binding to its receptors (Foster et al., 2003; Li et al., 2004).


Aim of work

Based on the prior literature, the aim of this study was to investigate and clarify the possible role of suramin on the healing process of skeletal muscle after induced laceration injury in a mice-model using histological, immunohistochemical and morphometric methods.


Skeletal Muscle

Skeletal Muscle Development (myogenesis)

All vertebrate skeletal muscles (apart from head muscles) are derived from mesodermal precursor cells originating from the somites (**Diagram 1**) (transient epithelial spheres that pinch out of the paraxial mesoderm lining both sides of the neural tube), to be more specific, skeletal muscle progenitor cells arise from the dermomyotome (**Diagram 2**) (an epithelial layer located in the dorsal compartment of the somite) (**Asakura and Rudnicki, 2002**).

Diagram(1):A schematic presentation of a 4-week old human embryo showing somites (Dequéant and Pourquié, 2008).

Diagram(2):A schematic presentation showing the maturation and compartmentalization of somites (Eckalbar et al., 2012)

During embryonic development, specification of mesodermal precursor cells to the myogenic lineage (committed myoblasts) is regulated by several signaling proteins (proteins that pass signals from outside of a cell through cell surface receptors to the inside of the cell) such as wingless/integrated protien (WNTS), Sonic hedgehog protien (SHH), Noggin and bone morphometric proteins (BMP4) (Diagram 3A). This specification to the myogenic lineage requires the up-regulation of the primary myogenic regulatory factors (MRFs): myogenic differentiation protien (MYOD) and