

GEOPHYSICAL STUDIES IN SOUTH SIWA AREA, WESTERN DESERT, EGYPT UTILIZING SEISMIC INTERPRETATIONS AND WELL LOGGING ANALYSIS

BY

Sally Saeed Riad Ahmed

B. Sc.

A THESIS

Submitted in partial fulfillment of the requirements for the MASTER DEGREE OF SCIENCE

IN GEOPHYSICS

Supervised by

Prof. Dr. Nasser M. Abou Ashour

Prof. of Geophysics Department of Geophysics Faculty of Science Ain Shams University

Dr. Abdullah M. E. Mahmoud

Ass. Prof. of Geophysics Department of Geophysics Faculty of Science Ain Shams University Dr. Azza M. Abd El Latif El- Rawy

Lecturer of Geophysics Department of Geophysics Faculty of Science Ain Shams University

GEOPHYSICS DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY CAIRO, EGYPT. 2015

Note

The present thesis is submitted to Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1- Geophysical field measurements.
- 2- Numerical analysis and computer programming.
- 3- Elastic wave theory.
- 4- Seismic data acquisition.
- 5- Seismic data processing.
- 6- Seismic data interpretation.
- 7- Seismology.
- 8- Engineering seismology.
- 9- Deep seismic sounding.
- 10- Structure of the earth.

She successfully passed the final examinations in these courses.

In fulfillment of the language requirement of the degree, she also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Said Abd El Maaboud Aly

LIST OF CONTENTS

Subject	Page number
ACKNOWLEDGMENTS	
ABSTRACT	
LIST OF CONTENTS	i
LIST OF FIGURES.	_
	V
LIST OF TABLES	ix
CHAPTER ONE: INTRODUCTION	1
1.1 Location of the Study Area	1
1.2 Aim and Objectives	1
1.3 Available Data	3
1.4 Methodology and Techniques	4
1.5 Exploration History and Activity	5
CHAPTER TWO: REGIONAL GEOLOGIC	8
SETTING	
2.1 Introduction	8
2.2 Subsurface Stratigraphy	9
2.2.1 Basement Complex	11
2.2.2 Paleozoic Stratigraphy	11
2.2.2.1 Cambrian – Ordovician Rocks	13
2.2.2.1.1 Shifa Formation	13
2.2.2.2 Silurian rocks	13
2.2.2.1 Kohla Formation	13
2.2.2.2 Basur Formation	13
2.2.2.3 Devonian rocks	13
2.2.2.3.1 Zeitoun Formation	14
2.2.2.4 Carboniferous Rocks	14
2.2.2.4.1 Desouky Formation	14
2.2.2.4.2 Dhiffah Formation	14
2.2.2.5 Permian Rocks	15
2.2.3 Mesozoic Stratigraphy	15
2.2.4 Cenozoic Stratigraphy	15
2.2.4.1 Tertiary Rocks	15
2.2.4.1.1 Apollonia Formation	15

2.2.4.2 Quaternary Rocks	16
2.3 Structure Setting.	16
2.4 Tectonism.	18
2.4.1 Tectonic Evolution of the Study Area	20
2.5 Geologic History of the Study Area	24
CHAPTER THREE: SEISMIC DATA	29
INTERPRETATION	
3.1 Introduction	29
3.2 Available Seismic Data in the Study Area	32
3.3 Seismic Data Acquisition	33
3.4 Seismic Data Processing	33
3.5 Seismic Data Interpretation	35
3.5.1 Seismic Interpretation Technique	35
3.5.2 Interpretation of Seismic Sections	38
3.5.3 Interpretation of Seismic Maps	43
3.5.3.1 Two – Way Time Structural Contour Map on	45
Upper Cretaceous (Cenomanian)	
3.5.3.2 Depth Structural Contour Map on Upper	45
Cretaceous (Cenomanian)	
3.5.3.3 Two – Way Time Structural Contour Map on	46
Jurassic	
3.5.3.4 Depth Structural Contour Map on Jurassic	48
3.5.3.5 Two – Way Time Structural Contour Map on	49
Upper Carboniferous	
3.5.3.6 Depth Structural Contour Map on Upper	49
Carboniferous	
3.5.3.7 Two – Way Time Structural Contour Map on	51
Lower Carboniferous	
3.5.3.8 Depth Structural Contour Map on Lower	53
Carboniferous	
3.5.3.9 Two – Way Time Structural Contour Map on	53
Upper Devonian	
3.5.3.10 Depth Structural Contour Map on Upper	54
Devonian	
3.5.3.11 Two – Way Time Structural Contour Map on	56
Lower Devonian	
3.5.3.12 Depth Structural Contour Map on Lower	58
Devonian	
3.5.3.13 Two – Way Time Structural Contour Map on	59
Cambro- Ordovician	
3.5.3.14 Depth Structural Contour Man on Cambro-	59

Ordovician	
3.6 Structures Inference of the Study Area	
CHAPTER FOUR: ANALYSIS OF	
DIPMETER DATA	
4.1 Introduction	
4.2 Interpretation of Dipmeter Data	
4.2.1 Analysis of Dipmeter Data for Structural Features	
4.2.2 Interpretation of Dipmeter Data of Foram-1 Well	
CHAPTER FIVE: INTEGRATION	
BETWEEN SEISMIC, DIPMETER, AND	
GRAVITY DATA TO DEDUCE	
STRUCTURAL CONFIGURATION	
5.1 Introduction	
5.2 Gravity Data Interpretation	
5.2.1 Bouguer Gravity Anomaly Map	
5.2.2 Stripping Technique	
5.2.2.1 Isopach Maps	
5.2.2.1.1 Isopach Map of Cretaceous Rocks	
5.2.2.1.2 Isopach Map of Jurassic Rocks	
5.2.2.1.3 Isopach Map of Upper Carboniferous Rocks	
5.2.2.1.4 Isopach Map of Upper Devonian Rocks	
5.2.2.2 Stripped-on Gravity Maps	
5.2.2.2.1 Stripping-on the Cretaceous Rocks	
5.2.2.2.2 Stripping-on the Jurassic Rocks	
5.2.2.2.3 Stripping-on the Upper Carboniferous Rocks	
5.2.2.2.4 Stripping-on the Lower Devonian Rocks	
5.3 Structural Trend Analysis	
5.3.1 Structural Trend Analysis for Cretaceous Rocks	
5.3.2 Structural Trend Analysis for Jurassic Rocks	
5.3.3 Structural Trend Analysis for Upper Carboniferous	
Rocks	
5.3.4 Structural Trend Analysis for Upper Devonian	
Rocks	
5.4 Subsurface Structural Trends of the Study Area	
CHAPTER SIX: WELL LOG DATA	
ANALYSIS	
6.1 Introduction	

6.2 Available Well Data	99
6.3 Evaluation of Petrophysical Properties of the Studied	99
Wells	
6.3.1 Determination of Volume of Shale Content	100
(Vsh)	
6.3.2 Determination of Porosity (Φ)	100
6.3.2.1 Determination of Total Porosity (Φ_T)	101
6.3.2.2 Determination of Effective Porosity (Φ_E)	101
6.3.3 Determination of Water Saturation (S _w)	102
6.3.3.1 Determination of Total Saturation by Dual	102
Water Equation	
6.3.3.2 Determination of Effective Saturation by	103
Indonesia Equation	
6.3.4 Determination of Hydrocarbon Saturation (Sh)	103
6.4 Lithological Identification.	104
6.4.1 Neutron- Density Crossplot	105
6.4.2 M-N Crossplot.	110
6.4.3 Lithosaturation Crossplots	115
6.5 Lithologic Well Correlation	126
SUMMARY AND CONCLUSION	127
REFERENCES	131
ARARIC SIIMMARV	

LIST OF FIGURES

	Figure	Page
		number
Figure (1.1):	Location map for South Siwa area	2
Figure (1.2) :	Sand dunes in South Siwa area	3
Figure (1.3):	Location map showing the studied wells	7
Figure (2.1):	Schematic cross section through the southern Western Desert showing the southern gradual	8
	deepening and thickening of the Paleozoic rocks under a thin Mesozoic/Tertiary wedge	
Figure (2.2):	South Siwa block, Foram Basin, Western	10
Figure (2.2).	Desert Stratigraphic chart	10
Figure (2.3) :	Paleozoic sub-crop map showing distribution of	12
riguit (2.3).	Paleozoic rocks over Western Desert, Cyrenaica	12
	and Kufra basins	
Figure (2.4) :	Northeast Africa, Cratonic and Tethyan rift	17
119010 (201).	basins	17
Figure (2.5) :	Bouguer gravity anomaly map of Foram, and	18
g (/ .	Dakhla basins	
Figure (2.6) :	Paleozoic Ghazalat basin	23
Figure (2.7):	Paleozoic Tehenu basin	24
Figure (2.8) :	Sedimentary basins and some structural	26
9 ,	elements deduced from Bouguer gravity map of	
	Egypt	
Figure (3.1) :	South Siwa block base map	31
Figure (3.2) :	Foram-1 well time depth curve	37
Figure (3.3) :	UER-134 interpreted seismic line	39
Figure (3.4):	UER-127 interpreted seismic line	39
Figure (3.5):	UER-106 interpreted seismic line	40
Figure (3.6):	UER-136X interpreted seismic line	40
Figure (3.7):	UER-131 interpreted seismic line	41
Figure (3.8):	UER-133 interpreted seismic line	42
Figure (3.9):	UER-139 interpreted seismic line	42
Figure (3.10):	Two – way time structural contour map on	46
9 (/)	Upper Cretaceous (Cenomanian)	
Figure (3.11):	Depth structural contour map on Upper	47
	Cretaceous (Cenomanian)	
Figure (3.12):	Two - way time structural contour map on	48
	Jurassic	
Figure (3.13):	Depth structural contour map on Jurassic	50

Figure (3.14):	J 1	51
	Upper Carboniferous	
Figure (3.15):		52
	Carboniferous	
Figure (3.16):	Two - way time structural contour map on	54
	Lower Carboniferous	
Figure (3.17):	Depth structural contour map on Lower	55
	Carboniferous	
Figure (3.18):	Two - way time structural contour map on	56
	Upper Devonian	
Figure (3.19):	Depth structural contour map on Upper	57
	Devonian	
Figure (3.20):	Two - way time structural contour map on	58
	Lower Devonian	
Figure (3.21):	Depth structural contour map on Lower	60
	Devonian	
Figure (3.22):	Two - way time structural contour map on	61
	Cambro- Ordovician	
Figure (3.23):	Depth structural contour map on Cambro-	62
	Ordovician	
Figure (4.1):	A borehole intersected by a steeply dipping, thin	67
	resistive bed	
Figure (4.2):	Dipmeter tadpole plot	68
Figure (4.3):	Dipmeter log patterns	69
Figure (4.4):	Foram-1 well location in the study area	71
Figure (4.5):	1	72
Figure (4.6):	Red pattern from 852 m to 894 m	73
Figure (4.7):	1	74
	m to 992 m	
Figure (4.8):	1	74
Figure (4.9):	1	75
Figure (4.10):	1	76
Figure (4.11):	•	77
Figure (4.12):	1	77
Figure (5.1):	Bouguer gravity anomaly map for the study area	80
Figure (5.2):		83
8	area	
Figure (5.3):		84
	area	٠.
Figure (5.4):		85
8	the study area	

Figure (5.5):	Isopach map for Upper Devonian rocks in the study area	86
Figure (5.6):	Stripped-on gravity map for the Cretaceous rocks	88
Figure (5.7):	Stripped-on gravity map for the Jurassic rocks	89
Figure (5.8):	Stripped-on gravity map for the Upper Carboniferous rocks	90
Figure (5.9):	Stripped-on gravity map for the Upper Devonian rocks	91
Figure (5.10):	Rose diagram shows the fault trends for Cretaceous rocks	92
Figure (5.11):	Rose diagram shows the fault trends for Jurassic rocks	93
Figure (5.12):	Rose diagram shows the fault trends for Upper Carboniferous rocks	94
Figure (5.13):	Rose diagram shows the fault trends for Upper Devonian rocks	95
Figure (5.14):	A combined rose diagram for fault trends dissecting the study area	96
Figure (6.1):	Well location map for the studied wells	98
Figure (6.2):	Density- Neutron crossplot of Upper Cretaceous (Cenomanian), Foram-1 well	106
Figure (6.3):	Density- Neutron crossplot of Upper Cretaceous (Cenomanian), Ammonite-1 well	107
Figure (6.4):	Density- Neutron crossplot of Upper Cretaceous, Desouky-1 well	108
Figure (6.5):	Density- Neutron crossplot of Jurassic, Foram-1 well	108
Figure (6.6):	Density- Neutron crossplot of Jurassic, Ammonite-1 well	108
Figure (6.7):	Density- Neutron crossplot of Upper Carboniferous, Foram-1 well	109
Figure (6.8):	Density- Neutron crossplot of Carboniferous, Ammonite-1 well	109
Figure (6.9):	Density- Neutron crossplot of Carboniferous, Desouky-1 well	109
Figure (6.10):	Density- Neutron crossplot of Lower Devonian, Foram-1 well	110
Figure (6.11):	M-N crossplot of the Upper Cretaceous (Cenomanian), Foram-1 well	112
Figure (6.12):	M-N crossplot of the Upper Cretaceous	112

Figure (6.13):	M-N crossplot of the Jurassic, Foram-1 well	113
Figure (6.14):	M-N crossplot of the Jurassic, Ammonite-1 well	113
Figure (6.15):	M-N crossplot of the Upper Carboniferous, Foram-1 well	114
Figure (6.16):	M-N crossplot of the Carboniferous, Ammonite-1 well	114
Figure (6.17):	M-N crossplot of the Lower Devonian, Foram-1 well.	114
Figure (6.18):	Lithology, oil, and water pattern used in lithosaturation crossplot	115
Figure (6.19):	Lithosaturation crossplot for Upper Cretaceous (Cenomanian) section in Foram-1 well	117
Figure (6.20):	Lithosaturation crossplot for Upper Cretaceous (Cenomanian) section in Ammonite-1 well	118
Figure (6.21):	Lithosaturation crossplot for Upper Cretaceous section in Desouky-1 well	119
Figure (6.22):	Lithosaturation crossplot for Jurassic section in Foram-1 well	120
Figure (6.23):	Lithosaturation crossplot for Jurassic section in Ammonite-1 well	121
Figure (6.24):	Lithosaturation crossplot for Upper Carboniferous section in Foram-1 well	122
Figure (6.25):	Lithosaturation crossplot for Carboniferous section in Ammonite-1 well	123
Figure (6.26):	Lithosaturation crossplot for Carboniferous section in Desouky-1	124
Figure (6.27):	Lithosaturation crossplot for Lower Devonian section in Foram-1 well	124
Figure (6.28):	Lithological correlation between Foram-1, Ammonite, and Desouky-1 wells	126

LIST OF TABLES

Table	
Table (3.1): Seismic data acquisition parameters	33
Table (3.2): Depth and two-way time on each age	38
Table (3.3): Velocity Model for Foram-1 well	44
Table (5.1): Densities and densities contrasted to basement of stripped rock units	82
Table (6.1): The available well data in the study area and its vicinity	99
Table (6.2) Main reservoir units in Foram-1, Ammonite-1 and Desouky-1 wells	125

ACHNOWLEDGEMENTS

First and above all, I would like to express my great thanks to "ALLAH" who supplied me with strength and patience to complete this work. "Thanks GOD".

I wish to express my gratitude and deep appreciation to Dr. Nasser Mohamed Abu Ashour, Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for his supervision, encouragement, kind help, valuable advice and revising the manuscript of the present work.

I would like to express my special gratitude to Dr. Abdullah M.E. Mahmoud, Assistant Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for helping me in dipmeter work and learning me how I can interpret a dipmeter data, and how to use also Techlog software.

I am greatly appreciated to Dr. Azza M. Abd El Latif El-Rawy, Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University for her supervision, suggesting the point, valuable leading comments during most of the stages of the progress of this thesis.

I am greatly indebted to. Dr. Ahmed Sobhy Mohamed Helaly, Assistant Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University for his great support and help.

Special thanks to my colleague Alaa Muhammed Kilany Hassan, for his support and help in the present work.

Thanks are extended to the Egyptian General Petroleum Company (EGPC) and Thani Egypt South Siwa B.V. (TESS) for providing the data required for this work.

Last but not least, grateful and true appreciation is expressed to my family for their help, patience and encouragement, but no words of thanks and feelings are sufficient.

ABSTRACT

The area of study is located in the westernmost part of the Egyptian Western Desert along the Libyan border south of latitude 28°N, it is restricted between latitudes 28° 00′ 00" N and 26° 30′ 00" N and longitudes 26° 43′ 00" E and 25° 00′ 00" E. It covers an area of approximately 28,439 square kilometers.

South Siwa area is a part of a vast underexplored region of the Western desert of Egypt. It was developed during the Paleozoic and Mesozoic time and was probably a part of large Paleozoic basin combining the Kufra, Dakhla, and Foram basins. The study area, South Siwa, lies in what is known as "the great sand sea" and the terrain is covered by thick sand dunes varying in height and running in NNW-SSE direction.

2D seismic interpretation was carried out on the study area using thirty seismic lines to build a regional geological view about the area by constructing a series of seismic maps e.g. time contour map, depth contour map and isopach map. But as a result of the surface topography, most of the seismic lines were shot in NNW-SSE direction parallel to the longitudinal sand dunes. So, the obtained structural maps show poor image about structures in the subsurface.

Analysis of dipmeter data was done to give information about faults and unconformities in the study area. But due to a limited number of wells (only one well) in the study area a complete structure view is not available. Therefore another source of information is required; stripped-on gravity maps that were derived from the bouguer gravity map of the south siwa area, were constructed.

By combing information obtained from structural contour maps derived from seismic interpretation, structures obtained from dipmeter analysis and matching them with stripped-on gravity maps, the structural configuration through the South Siwa area could be mapped. The deduced faults trends dissecting the area are: NNW-SSE, NE-SW, E-W, ENE-WSW and NE-SW.

A comprehensive well logging analysis was done for three wells to evaluate the various petrophysical properties (total and effective porosity, total and effective water saturation, hydrocarbon saturation, and shale volume) of possible reservoir intervals detected in the Upper Cretaceous (Cenomanian), Jurassic, Upper Carboniferous, and Lower Devonian sections in the study area.

This evaluation is anticipated to be guidelines for any future exploration in this area.