

DEVELOPMENT OF AN ENHANCED FEATURE RECOGNITION SYSTEM AND ITS APPLICATION FOR OPTIMIZIED PROCESS PLANNING OF SHEET METAL BENDING

By

Amr Abdelaleem Abdelrahman Metwally Salem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
- 2017

DEVELOPMENT OF AN ENHANCED FEATURE RECOGNITION SYSTEM AND ITS APPLICATION FOR OPTIMIZIED PROCESS PLANNING OF SHEET METAL BENDING

By Amr Abdelaleem Abdelrahman Metwally Salem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in
Mechanical Design and Production Engineering

Under the Supervision of

Prof. Dr. Abdalla S. Wifi Assoc. Prof. Dr. Tamer F. Abdelmaguid

Professor
Mechanical Design and Production
Engineering
Faculty of Engineering, Cairo University

Associate Professor
Mechanical Design and Production
Engineering
Faculty of Engineering, Cairo University

Assoc. Prof. Dr. Alaa Elmokadem

Associate Professor

Mechanical Design and Production Engineering
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT - 2017

DEVELOPMENT OF AN ENHANCED FEATURE RECOGNITION SYSTEM AND ITS APPLICATION FOR OPTIMIZIED PROCESS PLANNING OF SHEET METAL BENDING

By Amr Abdelaleem Abdelrahman Metwally Salem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Approved by the
Examining Committee
Examining Committee
Prof. Dr. Attia Gomaa, External Examiner
Prof. Dr. Abdelkhalik Radwan, Internal Examiner
,
Prof. DrAbdalla S. Wifi, Thesis Main Advisor
Ton. Bir iodunu S. Wini, Thesis Wain Havisor
Prof Dr. Tamer F. Abdelmaguid Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT - 2017 **Engineer's Name:** Amr Abdelaleem Abdelrahman

Date of Birth:27/1/1990Nationality:Egyptian

E-mail: <u>amrabdel-alim@cu.edu.eg</u>

Phone: +20 (111) 179-4111

Address: A. Orabi st., Elmohandsen, Giza, Egypt

Department: Mechanical Design and Production

Supervisors:

Prof. Dr. Abdalla S Wifi

Assoc. Prof. Dr. Tamer F Abdelmaguid Assoc. Prof. Dr. Alaa Elmokadem

Examiners:

Prof. Attia Gomaa (External examiner) Prof. Abdelkhalik Radwan (Internal examiner) Porf. Abdalla S. Wifi (Thesis main advisor)

Porf. Tamer F. Abdelmaguid (Member)

Title of Thesis:

Development of an enhanced feature recognition system and its application for optimized process planning of sheet metal bending

Key Words:

Process planning for V-bending; automatic feature recognition; STEP AP-203 format; collision detection; rule-based system; genetic algorithm

Summary:

The efficient process planning of the V-bending processes involves the determination of a feasible sequence and tool stages of the bending tasks to achieve the final desired product shape. The feasibility of such a sequence is materialized by the absence of collision during V-bending processes. According to the interference nature of the tasks of the V-bending process planning, it is considered as a constrained combinatorial optimization problem. In this thesis, the proposed Computer Aided Process Planning (CAPP) system uses the genetic algorithm as an optimization search algorithm to produce near optimal process plans. The proposed CAPP system includes three modules which are feature recognition module, collision detection module, and genetic algorithm optimization module. In the proposed system, the optimization algorithm is linked with the recognized features of the bent workpieces and the relations between the bend lines which could guide the search to converge to the near optimal process plan in minimum number of generations.

Acknowledgments

I would like to extend my appreciation to Prof. Abdalla S. Wifi for motivation. I would like also to express my sincere gratitude to Prof. Tamer F. Abdelmaguid for helping me in research and writing of this thesis. Besides, I would like to thank Prof. Alaa Elmokadem for his valuable advices. I appreciate their continuous and invaluable academic support and belief in me as a researcher.

I would like to acknowledge my dear colleagues, Eng. Hussien H. Abdelaziz, Eng. Mohamed Rafaat, Eng. Ahmed H. Sakr, Eng. Amr Magdy, for their support. Also, I appreciate invaluable support from Eng. Mohamed Elmihy during my work.

This thesis work is dedicated to my wonderful parents, Eng. Amira Mahmoud, and my brothers who have been a constant source of support and encouragement during the challenges of graduate school and life.

Table of Contents

ACKNOWLED	GMENTS	V
TABLE OF CO	NTENTS	II
LIST OF TABL	.ES	IV
LIST OF FIGU	RES	VI
ABSTRACT		X
CHAPTER 1:1	INTRODUCTION	1
1.1.	COMPUTER AIDED PROCESS PLANNING (CAPP)	1
1.2.	THE V-BENDING PROCESS	2
1.3.	PRINCIPLES OF THE V-BENDING PROCESS ON THE PRESS BRAKE	
1.4.	PROCESS PLANNING OF V-BENDING	
1.5.	PROBLEM STATEMENT	
1.6.	ORGANIZATION OF THE THESIS	
CHAPTER 2:1	LITERATURE REVIEW	11
2.1.	FEATURES RECOGNITION	11
2.2.	COLLISION DETECTION	14
2.3.	OPTIMIZATION OF V-BENDING PROCESS PLANNING	
CHAPTER 3:1	ENHANCED FEATURE RECOGNITION SYSTEM	21
3.1.	PROCESS PLANNING CONSIDERATIONS FOR V-BENDING	21
3.1.1.	Process parameters and constraints	
3.1.2.	Feasibility condition	
3.1.3.	Tool stages and relations between bend lines	
3.1.4.	Bend direction	
3.2.	PROPOSED NEW CLASSIFICATION OF BEND LINE RELATIONS	24
3.3.	PROPOSED FEATURE RECOGNITION SYSTEM	26
3.3.1.	Data extraction from STEP AP203 file	
3.3.2.	Central surface generation	
3.3.3.	Feature recognition	
3.3.4.	Face adjacency graph generation	
3.3.4.1.	Bend lines chain matrix	33
3.3.4.2.	Plane adjacency matrix	
3.3.4.3.	Base face	
3.3.5. 3.3.5.1.	Feature reasoning	
3.3.5.2.	Converting bend line to plane surface	
3.3.5.3.	Bend line direction	
3.3.6.	Dimension reasoning	
3.3.7.	Relations between bend lines	38
3.3.8.	Implementation	39
3.4.	DEMONSTRATIVE EXAMPLE AND PRACTICAL APPLICATION	40
3.5.	FEATURE RECOGNITION OF THE TOOL PARAMETERS	47
CHADTED 4.4	COLLISION DETECTION	40

4.1.	CLASSIFICATION OF BENT WORKPIECES	49
4.2.	THE EFFECT OF THE BENDING SEQUENCE AND THE TYPE (PUNCH PROFI	LE) OF
BENDING T	OOL ON THE FEASIBILITY OF PROCESS PLAN	
4.3.	THE PROPOSED ALGORITHM OF COLLISION DETECTION	
4.3.1.	2D collision detection subroutine	
4.3.1.1.	Line-line intersection	
4.3.1.2.	Line-circle intersection	
4.3.2.	3D collision detection subroutine.	59
4.3.2.1.	Parametric equation of line in 3D	
4.3.2.2.	Parametric equation of planer surface and cylindrical surface in 3D	
4.3.2.3.	Intersection point between line and plane, line and cylindrical surface	
4.3.2.4.	Examination of intersection points which are inside or outside the polygons	63
CHAPTER .	5 : TAILORED GENETIC ALGORITHM OPTIMIZATION	
TECHNIQU	JE	67
5.1.	GENETIC ALGORITHM	67
5.2.	THE EFFECT OF BENDING SEQUENCE ON THE DIMENSION REASONIN	
COLLINEAR	RITY RELATION BETWEEN THE BEND LINES	
5.2.1.	Updating dimensions reasoning algorithm	
5.2.2.	Updating collinearity relation	
5.3.	THE PROPOSED GENETIC ALGORITHM	
5.3.1.	Chromosome representation	
5.3.2.	Basic solution (basic process plan) and initial population	
5.3.3.	Combining tool stages setup lengths	
5.3.4.	Determining press brake setups	
5.3.5.	Completed solution (completed process plan)	
5.3.6.	Fitness function	
5.3.7.	Genetic algorithm operators	
5.3.7.1. 5.3.7.2.	Selection operator	
5.3.7.3.	Mutation operator	
5.3.7.4.	Elitism operator	
5.3.8.	Stopping criteria	
5.4.	DEMONSTRATIVE EXAMPLE AND PRACTICAL APPLICATION	
СНАРТБР	6: CONCLUSIONS	05
REFERENC	TES	97

List of Tables

Table 3.1: Included and bend angles of the bends of the sheet metal workpiece	
in Figure 3.16 by using other methods.	
Table 3.2: Bend direction of sheet metal workpiece in Figure 3.16 by using exis methods in the literature	
Table 3.3. Plane adjacency matrix for the sample workpiece shown in Figure 3.10	634
Table 3.4: Identified bend lines information for the sample workpiece in Figure	3.29
Table 3.5: Identified relationships between bend lines for the workpiece shown Figure 3.29	in
Table 3.6: Features recognized using other methods in the literature for the work shown in Figure 3.29	-
Table 3.7: Initial bend angles and back gauges of bend lines	44
Table 3.8: Tool stages and related dimensions for a selected process plan for the workpiece shown in Figure 3.29	
Table 4.1: The proposed process plan of bending the shown bent workpiece in F	igure
Table 5.1: Dimensions reasoning from feature recognition module of the shown by part in figure 5.4	bent
Table 5.2: Updating dimensions reasonning according bending sequence {b1, b2	2, b3}
Table 5.3: Updating dimensions reasonning according bending sequence {b1, b3	3, b2}
Table 5.4: Identified bend lines information for the sample workpiece in the Fig. 5.13	gure
Table 5.5: Relations between bend lines for the workpiece shown in Figure 5.12.	76
Table 5.6: Recognized technological data of the dies shown in the Figure 5.15	
Table 5.7: Recognized technological data of the punches shown in the Figure 5.1	
Table 5.8: An example of the basic solution of the workpiece shown in the Figure	ure5.13
Table 5.9: Example of same tool-bend lines sets	
Table 5.10: Min. length and max. Length combining bend lines	
Table 5.11: Tool stage constraints length combining bend lines	
Table 5.12: Left distance and right distance of bend lines in same tool set	
Table 5.13: Tool stage constraints length of bend lines of same tool set	
Table 5.14: Tool stage constraints length of bend lines of basic process plan	
Table 5.15: Combined tool stages of the bend lines of basic process plan	
Table 5.16: First part of the completed solution	
Table 5.17: Second part of the completed solution	
Table 5.18: Third part of the completed process plan	
Table 5.19: An example of cumulative fitness of the population	
Table 5.20: Representation of parent1	
Table 5.21: Representation of parent2	
Table 5.22: Representation of child1	
Table 5.23: Representation of child2	
Table 5.24: Revised representation of child1	
Table 5.25: Revised representation of child2	

Table 5.26: Process plan before mutation	86
Table 5.27: Process plan after mutation	86
Table 5.28: The recognized technological data of the die shown in the Figure 5.2	2(a) 87
Table 5.29: The recognized technological data of the punches shown in the Figure 5.22(b)	
Table 5.30: The basic solution of the first demonstrative process plan	
Table 5.31: The first component of the completed solution of the first demonstrative process plan	
Table 5.32: The second component of the completed solution of the first demonstr process plan	
Table 5.33: The third component of the completed solution of the first demonstrati process plan	ve 89
Table 5.34: The values of the initial bend angles and the back gauge of the first demonstrated process plan	89
Table 5.35: The basic solution of the second demonstrative process plan	92
Table 5.36: The first component of the completed solution of the second demonstr process plan	
Table 5.37: The second component of the completed solution of the second demonstrative process plan	92
Table 5.38: The third component of the completed solution of the second demonstration process plan	rative 93
Table 5.39: The values of the initial bend angles and the back gauge of the second demonstrated process plan	93

List of Figures

Figure 1.1: Scheme of the Computer Integrated Manufacturing (CIM)	1
Figure 1.2: Compression area and tension area around the neutral axis in bending	
process	2
Figure 1.3: Tool set of the V-bending process	3
Figure 1.4 : V-bending techniques	
Figure 1.5: V-bending process is carried out by air-bending on the press brake [1]	
Figure 1.6: Gauging (positioning) and air-bending of sheet metal workpiece[2]	
Figure 1.7: Standard lengths of punch segments	
Figure 1.8: Standard lengths of die segments	
Figure 1.9: Samples of collisions between different punches and same workpiece[3].	
Figure 1.10 : Different types of punches	
Figure 1.11: Different types of punch tool	
Figure 1.12: Two different sequences of bending the same workpiece [4]	
Figure 1.13 : scheme of automatic process planning of V-bending[1]	
Figure 1.14: Scheme of the proposed V-bending CAPP system in this thesis	
Figure 2.1 : Simple and intersected features of prismatic workpieces[11]	
Figure 2.2 : Features of rotional workpieces	
Figure 2.3 : Sheet metal manufacturing features [15]	
Figure 2.4 : Collision detection using sweep volume algorithm [1]	
Figure 2.5 : Collision between tool and workpiece	
Figure 2.6: Two different gauging position of the same bend line	
Figure 2.7: Forward search tree of obtining the bending sequence and tool list [33]	
Figure 2.8: Cost of path from root to goal node in search tree [33]	
Figure 2.9: Representation of the problem	
Figure 2.10: Schema of proposed system in [5]	
Figure 2.11 : Structure of the chromosone in [5]	
Figure 3.1: Die and punch parameters	
Figure 3.2: Demonstration of collision in V-bending.	
Figure 3.3. Tool stage parameters	
Figure 3.4: Length constrains of tool stage length	
Figure 3.5: Bend line directions.	
Figure 3.6: Length of the tool stage	
Figure 3.7: Classification of same face collinear bend lines	
Figure 3.8: Collinear bends adjacent to different faces	
Figure 3.9: Combined collinear bends	
Figure 3.10: Effect of new classification	
Figure 3.11: Scheme of the proposed feature recognition system	
Figure 3.12: Abridged data Structure of a STEP file that suits current application	
Figure 3.13: Part of STEP file	
Figure 3.14: Central surface of sheet metal	.29
Figure 3.15: A sample workpiece for illustrating surface pairing	
Figure 3.16: A sample sheet metal workpiece	
Figure 3.17: Directions of the normal vectors	
Figure 3.18: Bend lines chain matrix of the sheet metal workpiece in Figure 3.16	
Figure 3.19: Face adjacency graph of the workpiece shown in Figure 3.16	
Figure 3.20: Illustration of unfolding of one face	

Figure 3.21:	Converting bend line to plane surface	36
Figure 3.22:	Flat pattern development process	37
Figure 3.23:	Right and left gaps of bend lines	38
Figure 3.24:	Bend line left and right distances.	38
Figure 3.25:	Sample bent sheet metal workpiece	39
	Sample bent workpiece	
Figure 3.27:	Sample bent workpiece	39
Figure 3.28:	Samples of successful implementations of the proposed system	40
Figure 3.29:	Sample sheet metal bent workpiece and identified faces and bend lin	nes 41
_	Face adjacency graph for the sample workpiece shown in Figure 4.2	
Figure 3.31:	A sketch of the flat pattern generated for the sample workpiece show	vn in
I	Figure 3.29	42
Figure 3.32:	Selected tool set for practical application	44
Figure 3.33:	Infeasible bending sequence of separating combined collinear bend l	ines.
Figure 3.34:	Collinear bend lines adjacent to different faces could not be bent	
	simultaneously after bending the perpendicular bend lines between the	em. 45
Figure 3.35:	Camera shots of the optimized bending sequence of the sample work	piece.
		46
	Parameters of the punch tool	
Figure 3.37:	Parameters of the die tool	47
	Collisions in bending process	
Figure 4.2 : (Classes of the bent workpieces	50
	Projection in 2D plane of 2D bent workpieces which shown in Figure	
_	4.2(a)	
Figure 4.4:	Workpiece and tools	51
Figure 4.5: B	Bending of the workpiece according to bending sequence {b1, b3, b2}	51
Figure 4.6: B	Bending of the workpiece according to bending sequence {b3, b2, b1}	51
Figure 4.7: B	Bending of the workpiece according to bending sequence {b1, b3, b2}	51
	Flowchart of the proposed collision detection algorithm	
_	Jnfolding process	
Figure 4.10:	Bending process	54
Figure 4.11:	Setup operation after bending	54
	In case of 2D bent workpiece	
Figure 4.13:	In case of 3D bent workpiece	55
Figure 4.14:	Flowchart of 2D collision detection subroutine	56
Figure 4.15:	Relations between two lines	57
	Intersection	
Figure 4.17:	Intersection between line and circle	58
Figure 4.18:	Intersection points in case of line and circle intersection	58
	Cases of intersection between line and arc	
	Examples of two polygons in 3D	
Figure 4.22:	Flowchart of the 3D collision detection subroutine	61
_	Intersection between line and cylindrical surface in 3D	
-	Steps of the test of intersection point location which inside or outside	
•	planer polygon	
	Intersection point between line and cylindrical surface is inside surface	
_	polygon	
	Line and planer polygon lie in the same level	

Figure 4.27: Three 2D orthogonal projections of the line and the planer polygon in	
Figure 4.26(a)	.66
Figure 4.28: Three 2D orthogonal projections of the line and the planer polygon in	
Figure 4.26(b)	.66
Figure 5.1: Difference between local optima and global optima in two-dimensional	
optimization problem	
Figure 5.2: Steps of the genetic algorithm	
Figure 5.3: Difference between possible, infeasible, and feasible solutions	
Figure 5.4: Sheet metal workpiece	
Figure 5.5: Bending sequence {b1, b2, b3} of the shown workpiece in the Figure 5.4	
Figure 5.6: Bending sequence {b1, b3, b2} of the shown workpiece in the Figure 5.4	
Figure 5.7: Updating the dimensions reasoning by using collision detection module	.70
Figure 5.8: Left and right according to the operator position and the position of the	
coordinates	
Figure 5.9: Sheet metal workpiece	.71
Figure 5.10: Collinear bend lines according to the bending sequence {b2, b3, b1} or	
{b3, b2, b1}	.72
Figure 5.11: Collinear bend lines according to the bending sequence {b1, b2, b3} or	
{b1, b3, b2}	
Figure 5.12: Flow chart of the proposed genetic algorithm	
Figure 5.13: A Sample sheet metal bent workpiece	
Figure 5.14: A Sketch of the flat pattern of the workpiece which shown in the Figure	
5.13	
Figure 5.15: Sketches of the profiles of the dies	
Figure 5.16: Sketches of the profiles of the punches	
Figure 5.17: Bending sequence starts by b7	
Figure 5.18: Bending sequence starts by b1	
Figure 5.19: Different tool in the same setup	
Figure 5.20: Tool stages in the setups on press brake	
Figure 5.21: Pie chart of the percentage of the cumulative fitness of the population	
Figure 5.22: Tools which used to perform practical applications	
Figure 5.23: The setup on the press brake	
Figure 5.24: Camera shots of the optimized process plan of the sample workpiece	
Figure 5.25: The setup on the press brake	
Figure 5.26: Camera shots of the infeasible process plan of the sample workpiece	94

Nomenclature

CAPP: Computer Aided Process Planning CAM: Computer Aided Manufacturing CIM: Computer Integrated Manufacturing SME: Society of Manufacturing Engineering

GA: Genetic Algorithm

B-rep: Boundary representation CSG: Constructive Solid Geometry DXF: Drawing Exchange Format

IGES: Initial Graphics Exchange Specification STEP: Standard for the Exchange of Product Data

CSA: Cross Section Area

ACRD: Adjacent Component Directional Relationship

TSP: Travelling Sales Person

TPP: Travelling Purchasing Problem

2D: Two Dimensional 3D: Three Dimensional

 θ : angle between two normal vectors

CW: Clockwise

CCW: Counter Clockwise

f: Planar surfaceb: Bend line

Abstract

The high level of competition among industrial organizations in today's global market demands quick product reach to consumers with competitive quality levels while keeping production costs as low as possible. This necessitates highly efficient process planning that minimizes non-value-added activities in production processes and optimally selects subtle production steps with the right process parameters. The efficient process planning of the V-bending processes involves the determination of a feasible sequence and tool stages of the bending tasks to achieve the final desired product shape. The feasibility of such a sequence is materialized by the absence of collision between the sheet metal and the tool set or any workpiece of the press brake. The problem of finding efficient, feasible process plans for the V-bending process is complex as it involves selecting values for the different parameters, tools and the processing sequence from enormous possible choices. This is identified as a constrained combinatorial optimization problem for which no exact method is known to provide optimal solutions in reasonable computational time. This thesis proposes a Computer Aided Process Planning (CAPP) system that utilizes the genetic algorithm (GA) for providing efficient solutions to this problem.

The proposed CAPP system includes three modules. The first module is a feature recognition module which is responsible for recognizing the features of the bent workpieces from STEP AP-203 format. This module also recognizes the relations between bend lines. It contributes to the feature recognition systems in the literature by providing: (1) a new classification of the collinear bend lines and a method to distinguish between separate and non-separate collinear bend lines; (2) an easier method to determine the included and bend angles; (3) an enhanced method for determining the bend direction; and (4) a method for automated reasoning for the required dimensions to determine the length of the tool stage of each bend line. These contributions aim to reduce the computational time in the feature recognition process and provide more information to produce more efficient process plans.

The automatic collision detection algorithm is the second module in this system which judges the feasibility of any proposed process plan. The proposed collision detection module can distinguish between 2D and 3D bent workpieces. Besides, it includes 2D and 3D collision detection subroutines which are responsible for detecting collisions according to the class of the bent workpiece. This helps in reducing the computational time needed for the collision detection process. The first two modules provide a method for automatically updating the reasoning of the required dimensions to determine the length of the tool stage of each bend.

The third module is the genetic algorithm optimization module which is responsible for generating efficient process plans. This module utilizes a solution representation (chromosome) and a fitness function that are modifications to previous studies. The GA utilizes the recognized features of the bent workpieces and the relations between the bend lines which are provided by the first module. This helps in reducing the number of iterations to reach an efficient solution.

Chapter 1: Introduction

The high level of competition among industrial organizations in today's global market demands quick product reach to consumers with competitive quality levels while keeping production costs as low as possible. This necessitates highly efficient process planning that minimizes non-value-added activities in production processes and optimally selects subtle production steps with the right process parameters. Computers have played a major role in achieving such targets via computer aided process planning (CAPP) systems, which are the interface between computer-aided design (CAD) and computer aided manufacturing (CAM). The scheme of Computer Integrated Manufacturing (CIM) is shown in Figure 1.1.

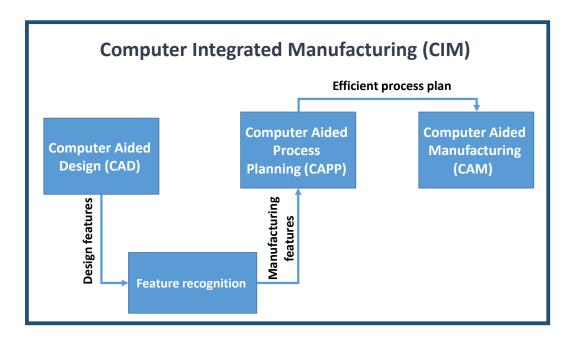


Figure 1.1 : Scheme of the Computer Integrated Manufacturing (CIM)

1.1. Computer Aided Process planning (CAPP)

Process planning is the bridge between the design and manufacturing stages of any product. It selects the manufacturing details according to the design. The Society of Manufacturing Engineering (SME) define the process planning as "process planning is the systematic determination of the methods by which a product is to be manufactured economically and competitively". Consequently, the full process planning includes: (1) the characterization of the raw material of the workpiece; (2) the manufacturing operations and its sequence; (3) the manufacturing machine; (4) the selected tools and holding devices; and (5) the manufacturing conditions. There are two approaches to produce the process plan of any product which are the experience-based method and the computer aided process planning methods.

The experience-based method is a manual method which depends on the experience of the process planner. Many manual process plans may face the same manufacturing