Myocardial MR imaging in ischemic heart disease

Thesis
Submitted for partial fulfillment of MD degree in
Radiodiagnosis

Submitted by

Mohamed Talaat Ali

(M.Sc. Radiodiagnosis; Cairo University)

Supervised by:

Prof. Dr. Magdy Ibrahim Bassiouny

Prof. of Radiodiagnosis
Faculty of Medicine
Cairo University

Prof. Dr. Alia Hassan Abd Al-Fatah

Prof. of Critical Care Medicine Faculty of Medicine Cairo University

Prof. Dr. Mohamed Ashraf Shawky Tamer

Prof. of Critical Care Medicine Faculty of Medicine Cairo University

Dr. Mohamed Ali Salem

Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2012

Abstract

Purpose: To prospectively determine the diagnostic performance of resting myocardial magnetic resonance imaging at 3 T for depiction of clinically relevant coronary artery stenosis (≥ 70% diameter) in patients with suspected or known to have coronary artery disease, using conventional coronary angiography as the reference standard and comparing results with SPECT findings.

Materials and Methods: Cine MR imaging, first-pass perfusional images and delayed enhancement of the entire left ventricle were acquired in 31 patients at rest. Stress SPECT scan and selective coronary angiography were performed in all patients. Evaluation was performed on a per territory basis.

Results: The overall sensitivity and specificity of MR imaging for depicting coronary artery disease was 83% (44 of 53 diseased territories) and 92% respectively. The overall sensitivity and specificity of SPECT for depicting coronary artery disease was 77% (41 of 53 diseased territories) and 95% respectively. The sensitivity of SPECT was higher than MR imaging for depiction of one vessel disease, yet cardiac MR showed higher sensitivity for depiction of double and triple vessel diseases. The sensitivity of cardiac MR and SPECT for detection of myocardial ischemic tissue was 68.9% and 72% respectively. The sensitivity of SPECT in detection of subendocardial scarring and scarred (non viable) myocardial segments was 14% and 54% respectively as referred to cardiac MR viability findings.

Conclusion: Resting cardiac MR could be valuable in detection of significant coronary artery disease with relatively higher sensitivity values compared to stress SPECT study. In addition, it shows high accuracy in detection and delineation of myocardial scarring, particularly the subendocardial scarring.

Key words: Coronary artery disease (CAD), Cardiac magnetic resonance (CMR), Single photon emission computed tomography (SPECT), Conventional coronary angiography.

Acknowledgement

First and foremost, thanks to ALLAH

Foremost, I would like to express my appreciation for **Dr**. **Magdy Ibrahem Bassiouny**, professor of Radiodiagnosis, Faculty of medicine, Cairo University, for choosing this valuable topic and for his encouragement, support and kind advice that were of great value throughout the work.

I am grateful to **Dr. Alia Hassan Abd Al-Fatah**, professor of Critical Care Medicine, Faculty of medicine, Cairo University and **Dr. Mohamed Ashraf Shawky Tamer**, professor of Critical Care Medicine, Faculty of medicine, Cairo University, **Dr. Mohamed Ali Salem**, lecturer of Radiodiagnosis, and **Dr. Sherif Sabry**, lecturer of Critical Care Medicine, Faculty of medicine, Cairo University, for their endless effort, continuous supervision and kind help.

I am also thankful to Professor **Dr. Mohamed Mohamed El-Tokhy**, head of the Radiodiagnosis department, Faculty of medicine, Cairo University.

I would like also to thank all my professors, senior staff members and my fellow colleagues for their help and cooperation throughout the conduction of this work.

I have to thank **Dr. Loai Ezzat**, professor of Radiodiagnosis, Faculty of medicine, Cairo University, for his cooperation, dedication and help throughout the work. I am deeply thank head of technologist **Mr. Amr Mohamed**.

At last, but definitely not the least, I deeply thank my wife and family for their support and encouragement to complete this work.

CONTENTS

	Page
List of figures	I
List of charts	III
List of tables	IV
List of abbreviations	IV
Introduction	VIII
Aim of the work	ΧI
Review of literature	1
I. Cardiac anatomy	- 1
■ Introduction	-
• Position of the heart in the thorax	
Gross cardiac anatomy	
■ Cardiac structures	
II. Basic MRI protocols	11
■ Introduction	
 Specific CMR techniques and protocols 	
Morphologic Imaging Using dark blood sequences	
Morphologic Imaging using bright blood sequences	
Cine imaging	
Cardiac tagging	
Contrast enhanced cardiac MRI	
Flow sensitive imaging using velocity encoded sequences MR angiography	
III. Cardiovascular MR Imaging planes and segmentation	20
■ Introduction	
 Imaging planes for cardiac structures 	
Segmentation of the left ventricle	
IV. Cardiac function	28
■ Introduction	
 Systolic function 	
Mechanisms of ventricular contraction and ejection	
Ventricular volumes, function and mass	
V. Pathophysiology of ischemic heart disease	35
■ Introduction	

 Causes of myocardial ischemia 	
 Physiology of myocardial oxygen supply and oxygen der 	nand
The coronary circulation	
Events during ischemia	
Consequences of ischemia	
 Clinical syndromes of ischemic heart disease 	
VI. MR Imaging of myocardial ischemia and viability	45
■ Introduction	
 Non invasive imaging tools in imaging of ischemic heart diseases 	
 MR imaging strategies in ischemic heart disease 	
 MR imaging approaches to assess myocardial ischemia of viability 	and
 CMR imaging of acute myocardial infarction 	
 Acute versus chronic myocardial infarction 	
 Imaging of complications related to ischemic heart diseas 	se
Patients and methods	73
Data analysis	83
Results	86
Case presentation	95
Discussion	142
Conclusion and summary	164
References	166
Arabic summary	188

■ Epidemiology

List of Figures

Figure	Page	Title
1	2	Position of the heart in the thorax
2, 3, 4, 5,6, 7,8	3, 4, 5, 6, 7	Anatomy of cardiac chambers in cardiac MR
9	8	Anatomy of tricuspid and mitral valves in cardiac MR
10	12	Axial and sagittal half-Fourier acquisition single-shot turbo spin-echo (HASTE) images
11	13	Four-chamber and short-axis cine images using SSFP
12	14	Creation of tag lines of the myocardium, using radial tagging technique
13	14	Example of short-axis Spatial modulation of magnetization (SPAMM) tagging
14	17	Contrast-enhanced inversion-recovery (CE-IR MRI) technique
15	17	Inversion recovery curves of normal and infarcted myocardium
16	18	The volume of distribution for gadolinium is increased in both acute and chronic infarcts
17	21	Axial, sagittal and coronal images for the heart
18, 19, 20	22	Planning two, four-chamber and short axis scout views
21, 22, 23, 24, 25	23,24	Planning short axis, two, three and four-chamber cine views
26, 27	24, 25	Planning the aortic outflow tract view
28, 29, 30	26, 27	Division of the LV into basal, mid-cavity, and apical SA segments
31, 32	29	Mechanisms of (left) ventricular ejection studied by cardiac MR
33	34	Impact of endocardial trabeculations and papillary muscles on calculations of LV volumes, mass, and function.
34	40	The ischemic cascade and the role of MRI techniques.
35	40	Effects of ischemia and reperfusion on myocardial tissue viability and necrosis
36	53	Basal LV view in end diastole and end systole showing inferior wall scarring and thinning out
37	55	Stress-inducible ischemic wall-motion abnormalities
38	60	SPECT vs. delayed-enhancement CMR versus histologic sections in a dog model of infarction
39	62	Subendocardial myocardial infarction demonstrated by CE-IR MR images in short-axis show

40	62	Transmural myocardial infarction demonstrated by short-axis CE-IR MR images
41	63	Transmural myocardial infarction with microvascular obstruction demonstrated by short-axis CE-IR MR images
42	65	Acute myocardial infarction in left anterior descending (LAD) perfusion territory
43	65	Acute myocardial infarction in right coronary artery (RCA) perfusion territory
44	66	Atypical presentation of septal infarction in cardiac MR
45	67	Sequential delayed-enhancement images demonstrate a "no-reflow" zone in an anterior infarction
46	72	CMR images in the 4-chamber orientation from a patient with previous anteroseptal MI
47	75	Electrode positioning
48	75	The cardiac MR Coil

Case No 1; page 95

Figure 49, 50, 51, 52, 53, 54, and 55: CMR, SPECT, Conventional and CT coronary angiographic findings.

Case No 2; page 99

Figure 56, 57, 58, 59, 60, 61, and 62: CMR, SPECT and Conventional coronary angiographic findings.

Case No 3; page 103

Figure 63, 64, 65, and 66: CMR, SPECT and Conventional coronary angiographic findings.

Case No 4; page 107

Figure 67, 68, 69, 70, and 71: CMR, SPECT and Conventional coronary angiographic findings.

Case No 5; page 112

Figure 72, 73, 74, 75, and 76: CMR, SPECT and Conventional coronary angiographic findings.

Case No 6; page 115

Figure 77, 78, 79 and 80: CMR, SPECT and Conventional coronary angiographic findings.

Case No 7; page 119

Figure 81, 82, 83 and 84: CMR and SPECT findings.

Case No 8; page 122

Figure 85, 86, 87, 88 and 89: CMR, SPECT and Conventional coronary angiographic findings.

Case No 9; page 126

Figure 90, 91, 92 and 93: CMR, SPECT and Conventional coronary angiographic findings.

Case No 10; page 130

Figure 94, 95, 96 and 97: CMR and Conventional coronary angiographic findings.

Case No 11; page 133

Figure 98, 99, 100 and 101: CMR and SPECT findings.

Case No 12; page 136

Figure 102, 103, 104, 105, and 106: CMR, SPECT and Conventional coronary angiographic findings.

Case No 13; page 139

Figure 107, 108, 109, and 110: CMR, SPECT and Conventional coronary angiographic findings.

List of Charts

Chart	Page	Title
1	86	Ratios according to number of each affected territory
2	87	Sensitivity of cardiac MR and SPECT for detection of diseased territory
3	88	Sensitivity ratios for MR and SPECT in detection of affected territories in patients with one, two and three diseased territories
4	89	Sensitivity, specificity, PPV and NPV for MR and SPECT in detection of affected LAD territory
5	89	Sensitivity, specificity, PPV and NPV for MR and SPECT in detection of affected LCx territory
6	89	Sensitivity, specificity, PPV and NPV for MR and SPECT in detection of affected RCA territory
7	90	Detection of pure ischemic territory in cardiac MR by perfusional defect & subendocardial scarring and motion abnormality
8	93	Detection of myocardial ischemic segment by cardiac MR versus SPECT
9	94	Detection of myocardial scarred segment by cardiac MR versus SPECT
10	94	Detection of subendocardial scarred segment by cardiac MR versus SPECT
11	159	Relation between transmural extent of hyper enhancement and likelihood of increased contractility after revascularization

List of Tables

Table	Page	Title
1	31	Global functional parameters
2	42	Different physiological states of myocardium with their perfusion and contractile functionality
3	66	Corresponding sites of myocardial lesions according to the affected coronary artery territory
4	71	Differentiation of acute and chronic myocardial infarction on CMR imaging
5	83, 84, 85	Data analysis for the examined 31 patients in the current study
6	88	Number of affected territories detected by MR and SPECT in patients with one, two and three diseased territories
7	93	Detection of viable and non viable myocardial segments by cardiac MRI versus SPECT
8	149	Summary for results of the published researches evaluating cardiac MR in detection of significant coronary artery disease

List of abbreviations

АНА	American Heart Association
AMI	Acute myocardial infarction
ATP	Adinosine tri-phosphate
AV	Atrioventricular
BSA	Body surface area
b-SSPF	Balanced steady state free precession
CABG	Coronary artery bypass graft
CAD	Coronary artery disease
CE-IR	Contrast enhanced inversion recovery
CI	Cardiac index

CMR	Cardiovascular magnetic resonance
СО	Cardiac output
СТ	Computed tomography
СТА	Computed tomographic angiography
DCMR	Dobutamine stress cardiovascular magnetic resonance
DE	Delayed enhancement
DE-CMR	Delayed enhancement cardiovascular magnetic resonance
DICOM	Digital Imaging and Communications in Medicine
Double-IR FSE	Double inversion recovery fast spin echo
DSE	Dobutamine stress echocardiography
DTPA	Diethylenetriaminepentaacetic acid
ECG	Electrocardiography
ED	End diastole
EDV	End diastolic volume
EDWT	End diastolic wall thickness
EF	Ejection fraction
EPI	Echoplanar imaging
ESV	End-systolic volume
FDA	Food and Drug Administration
FDG	Fluorodeoxyglucose
FGRE	Fast gradient recalled echo
FIESTA	Fast imaging employing steady-state acquisition
FISP	Fast Imaging with Steady State Precession
FOV	Field-of-view
GBCA	Gadolinium-based contrast agents
GE	Gradient-echo
HASTE	Half Fourier acquisition turbo spin-echo
HDL	High density lipoprotein

HR	Heart rate
HRPI	High-resolution first-pass myocardial perfusion imaging
IR FSE	Inversion recovery fast spin echo
IR GRE	Inversion recovery gradient echo
IR TSE	Inversion recovery turbo spin echo
IR-b-TFE	Inversion recovery balanced turbo field echo
IR-FFE	Inversion recovery fast field echo
IR-FFE	Inversion recovery fast field echo
IR-FLASH	Inversion recovery fast low angle shot
IV	Intravenous
LAD	Left anterior descending coronary artery
LCA	Left coronary artery
LCx	Left circumflex coronary artery
LGE	Late gadolinium enhancement
LM	Left main stem
LV	Left ventricle
MI	Myocardial infarction
MRA	Magnetic resonance angiography
MRCA	Magnetic resonance MR angiography
MRI	Magnetic resonance imaging
MVO	Microvascular obstruction
NPV	Negative predictive value
PCI	Percutaneous coronary intervention
PET	Positron emission tomography
PPV	Positive predictive value
PTCA	Percutaneous trans-luminal coronary angioplasty
RCA	Right coronary artery
RV	Right ventricle

SA	Short-axis
SE	Spin echo
SEH	Subendocardial enhancement
SENSE	Sensitivity encoding
SMASH	Simultaneous acquisition of spatial harmonics
SNR	Signal to noise ratio
SPAMM	Spatial modulation of magnetization
SPECT	Single photon emission computed tomography
SSFP	Steady state free precession
STIR	Short TI inversion recovery
SV	Stroke volume
Т	Tesla
TFE	Turbo field echo
TGE	Turbo gradient echo
TSE	Turbo spin echo
TTC	Triphenyltetrazolium chloride
VL	Vessel
VS	Versus
VCG	Vectorcardiography

INTRODUCTION

INTRODUCTION

Heart disease continues to be a major source of morbidity and mortality in the world. Ischemic coronary diseases and heart failure as well as a range of other cardiac conditions, often require advanced imaging modalities to provide effective diagnosis and patient management. As a result, cardiac magnetic resonance imaging (MRI) and other imaging techniques have been introduced to supplement the echocardiography that has been traditionally performed in patients suspected to be suffering from cardiac dysfunction (*Rosamond W et al 2008*).

A variety of tests are available in routine clinical practice for the noninvasive diagnosis of coronary artery disease (CAD), such as exercise electrocardiography (ECG), echocardiography, single photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiovascular magnetic resonance imaging (CMR). Many noninvasive diagnostic tools are suboptimal, and both patients and physicians want a reliable diagnosis. Consequently, 40% to 60% of all patients who undergo invasive cardiac catheterization procedures do not require a revascularization procedure such as bypass surgery or angioplasty. Thus, a noninvasive test with a higher rate of diagnostic accuracy might reduce the number of overall cardiac catheterization procedures (Higgins et al, 2006).

The clinical role of cardiovascular magnetic resonance (CMR) continues to expand, supported by ongoing technological advances that have shortened acquisition times while maintaining and often improving image quality. New applications of CMR in cardiovascular imaging continue to emerge, and results from larger clinical trials are beginning to define the role of CMR in a range of clinical scenarios. In recent years, MRI has become a widely used non-invasive imaging modality in detection and evaluation of different cardiovascular diseases. Cardiac MRI is currently considered a clinically accepted modality for assessment of cardiac structure and

function, ventricular mass and volume, myocardial perfusion and to determine the size of infarction (Pennell DJ et al, 2004).

CMR has evolved into a new technique for the noninvasive detection of obstructive CAD. The ability of CMR to visualize global and regional wall motion and systolic thickening of the left ventricle (LV) with a high degree of spatial and temporal resolution makes it possible to detect abnormalities of wall motion (*Higgins et al 2006*).

Assessment of the first passage of paramagnetic contrast material through the myocardium can be used to evaluate myocardial blood flow and detect perfusion defects that reflect coronary artery disease. The technique is attractive as it allows for studying myocardial perfusion at rest and during stress, it offers high spatial resolution, does not expose patients to ionizing radiation and the acquired data can be analyzed using quantitative or semi-quantitative methods (*Plein S et al, 2005*).

Dynamic MRI with a bolus injection of contrast material enables assessment of first-pass myocardial enhancement with or without pharmacologic stress, which can provide information regarding the presence and extent of coronary artery disease. Recent studies revealed that perfusion MRI has a high sensitivity and specificity, considering the conventional coronary angiography as the gold standard (Sakuma H et al, 2005).

Perfusion deficits identify areas of myocardial infarction, as well as viable myocardium with limited coronary flow reserve (Klocke FJ et al, 2001). Recently, delayed-enhancement MR imaging has been established as a robust MR imaging technique to detect myocardial infarction, even small subendocardial infarcts, with better results than those of nuclear medicine techniques because of the improved spatial resolution (Lee VS et al, 2004).

Cardiac MRI is an advanced modality that continues to offer challenges to radiology professionals. Cardiac wall motion, the morphology of cardiac chambers, ejection fraction, cardiac perfusion, and myocardial viability are all effectively imaged with the use of cardiac MRI. However, due to the rapid evolution and