

Study of nitric oxide synthase (eNOS) gene polymorphisms in systemic lupus erythematosus and rheumatoid arthritis patients

Thesis

Submitted for the Partial Fulfillment of MD Degree in Clinical and Chemical Pathology

By

Mohamed Abdullah Kamel Massoud

M.B. B.Ch. M.Sc. Clinical and Chemical Pathology Assistant lecturer of clinical and chemical pathology Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Inas Ismail Raafat

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr. Noha Mohamed Hosni Shahin

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr. Mariam Halim Yacoub

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2012

Acknowledgment

First of all I have to fulfill my deepest thanks to Allah the most gracious and the most merciful for lighting to me the way not only throughout this work but also throughout my whole life.

It is a great honor to express my sincere and cordial thanks to Prof. Dr. Inas Ismail Raafat, Professor of Clinical and Chemical pathology, Faculty of Medicine, Cairo University for her great concern ceaseless enthusiasm and extreme patience. No words can express my deepest gratitude for her overwhelming kindness and encouragement.

I am sincerely grateful to Dr. Noha Shahin Assistant Professor of Clinical and Chemical pathology, Faculty of Medicine, Cairo University for her kind assistance and encouragement.

My deepest thanks go to Dr. Mariam Halim, Lecturer of Clinical and Chemical pathology, Faculty of Medicine, Cairo University, for her valuable and honest help, cooperation and encouragement.

When it comes to words, no words can help; but using what is available of them may only be an attempt to express my sincere and honest feelings, gratitude and appreciation towards my two icons Prof. Dr. Safaa Al Karaksy, Professor and head of Clinical and Chemical pathology, Faculty of Medicine, Cairo University and Dr. Mervat Khorshied, Assistant Professor of Clinical and Chemical pathology, Faculty of Medicine, Cairo University for their limitless support, guidance and ceaseless enthusiasm. I can only pray and ask Allah to reward them in every way for lighting my path and for this I will always be in debt.

Abstract

Systemic Lupus Erythematosus and Rheumatoid Arthritis are chronic, multifactorial autoimmune disorders where many genes have been tested for carrying the risk of development or the progression of these diseases.

The aim of the present study was to detect the prevalence of endothelial nitric oxide synthase (eNOS) genetic polymorphisms [the 27-bp repeat in intron 4 and the SNP T-786C polymorphism in the promoter region] among Egyptian SLE and RA patients and to study the influence of these genetic polymorphisms on the clinical and laboratory features of these patients.

In this study no statistically significant association could be found between these genetic polymorphisms as risk factors of these two diseases or the clinical features of the patients specially lupus nephritis. But we could find an association between the T-786C genetic polymorphism and the extra-articular manifestations of RA.

Key words: endothelial nitric oxide synthase (eNOS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), PCR, RFLP.

Contents

	Page
List of tables.	I
List of figures.	III
List of abbreviations.	IV
Introduction and aim of the work	1
Review of literature	
Chapter 1: Systemic Lupus erythematosus	5
Chapter 2: Rheumatoid arthritis	48
Chapter 3: Nitric oxide synthase	99
Subjects and methods	119
Results	135
Appendix	163
Discussion	170
Summary and conclusion.	182
References	185
Arabic summary	217

List of tables

No.		Page
1	DMARDs for Treatment of Rheumatoid Arthritis	96
2	Properties of NO	105
3	SLEDAI	120
4	X-ray staging	122
5	Clinical data of SLE patients	137
6	Laboratory data of SLE patients	139
7	Genotyping of the eNOS genetic polymorphisms in SLE	
	patients and controls	141
8	Comparison between SLE patients with wild type or mutant	
	eNOS intron 4 gene as regards their clinical data	143
9	Comparison between SLE patients with wild type and mutant	
	eNOS intron 4 genotypes as regards their laboratory data	144
10	Comparison between SLE patients with wild type and mutant	
	eNOS T-786C genotypes as regards their clinical data	146
11	Comparison between SLE patients with wild type and mutant	
	eNOS T-786C genotypes as regards their laboratory data	147
12	Comparison between SLE patients and controls as regards the	
	frequencies of eNOS intron 4 and T-786C genotypes	149
13	Clinical data of RA patients	151
14	Laboratory data of RA patients	153
15	Genotyping of the eNOS genetic polymorphisms in RA patients	
	and controls	154
16	Comparison between RA patients with wild and mutant eNOS	
	intron 4 gene as regards their clinical data	157

Γ/	Comparison between RA patients with wild type and mutant	
	eNOS intron 4 genotypes as regards their laboratory data	158
18	Comparison between RA patients with wild type and mutant	
	eNOS T-786C genotypes as regards their clinical data	159
19	Comparison between RA patients with wild type and mutant	
	eNOS T-786C genotypes as regards their laboratory data	160
20	Comparison between RA patients and controls as regards the	
	frequencies of eNOS intron 4 and T-786C genotypes	161
21	Clinical data of RA patients	163
22	Clinical data of SLE patients	164
23	Laboratory data of RA patients	165
24	Laboratory data of SLE patients	166
25	Genotyping of SLE patients	167
26	Genotyping of Ra patients	168
27	Laboratory data and genotyping of control cases	169

List of figures

No.		Page
1	Renal biopsy with IF staining	39
2	Anti-native DNA test with Crithidia substrate	42
3	Red blood cells cast	45
4	Aetiology of RA	50
5	Diagram for eNOS gene most common polymorphic sites	100
6	The generation of NO via nitric oxide synthase	101
7	Schematic ordering of T cell activation, nitric oxide	
	production and mitochondrial hyperpolarization	103
8	T-cell subset regulation of NO production	104
9	Schematic diagram of T cell activation, nitric oxide	100
10	production, and mitochondrial hyperpolarization	109 127
11	Clinical data of SLE patients	138
12	eNOS genetic polymorphism in intron 4 in SLE patients	130
	and controls	141
13	eNOS T-786C genetic polymorphism SLE patients and	
	controls	141
14	Clinical data of RA patients	152
15	eNOS genetic polymorphism in intron 4 in RA patients and	
	controls	155
16	eNOS T-786C genetic polymorphism in RA patients and	
1.77	controls	155
17	Genotyping of eNOS gene polymorphisms	162

List of abbreviations

α	Alpha.
β	Beta.
γ	Gamma.
δ	Delta.
κ	Kappa.
λ	Lambda.
ζ	Zeta.
ACL	Anti cardiolipin.
ACPA	Anti cyclic citrullinated peptide.
ACR	American college of rheumatology.
ADAMTS	A Disintegrin And Metalloproteinase with Thrombospondin Motifs.
ADCC	Antibody-dependent cellular Cytotoxicity.
AECA	Anti endothelial cell antibody.
AFA	Anti Fillagrin antibody.
AIM	Absent in myeloma.
AKA	Anti keratin antibody.
AP	Activator protein
APF	Anti perinuclear factor.
ARA	American rheumatism association.
ARDS	Adult respiratory distress syndrome.
ATP	Adenosine triphosphate.
AVA	Anti vimentin antibody.
BAFF	B cell activating factor.

BCR	B cell receptor.
BLK	B lymphoid tyrosine kinase.
BLyS	B lymphocyte stimulator.
C3, C4	Complement component 3
CaMK	Calmodulin dependent kinase.
CBC	Complete blood count.
ССР	Cyclic citrullinated peptides.
CD	Cluster of differentiation.
CF	Citrullinated fibrin.
СНВ	Congenital heart block.
CIA	Collagen induced arthritis.
CIE	Countercurrent immune electrophoresis.
COMP	Cartilage oligomeric matrix protein.
CRE	Cyclic AMP response element.
CREB	CRE binding protein.
CREM	CRE modulator.
CRP	C- reactive protein.
Csk	C-src tyrosine kinase.
CT	Computerized tomography.
CTLA	Cytotoxic T-lymphocyte associated protein.
DAS	Disease activity score.
DC	Dendritic cells.
DIP	Distal interphalangeal.
DMARDs	Disease modifying anti rheumatic drugs.
DN	Double negative.
DNA	Deoxyribonucleic acid.

ds-DNA	Double stranded DNA.
EBI3	Epstein Barr virus induced gene 3.
EBV	Epstein-Barr virus.
EF	Extra follicular.
EIA	Enzyme immunoassays.
Elf-1	E74-like factor 1 (ets domain transcription factor)
ELISA	Enzyme linked immunesorbant assay
ENA	Extractable nuclear antigens.
eNOS	Endothelial nitric oxide synthase.
EPO	Erythropoietin.
ESR	Erythrocyte sedimentation rate.
Fc	Fragment crystallizable.
FCGR	Fragment crystallizable gamma region.
FITC	Fluorescein isothiocyanate.
Foxp3	Forkhead box P3
FS	Felty's syndrome.
FSH	Follicle stimulating hormone.
GC	Germinal center.
G-CSF	Granulocyte colony stimulating factor.
GN	Glomerulonephritis.
GSH	Glutathione.
GWAS	Genome wide associated studies.
HLA	Human leucocytic antigen.
HMGB1	High mobility group box.
ICAM	Intercellular adhesion molecules.
ICOS	Inducible co-stimulatory molecule

ID	Immunodiffusion.
IFN	Interferon.
Ig	Immunoglobulin.
IIF	Indirect immune fluorescence.
IL	Interleukin
iNOS	Inducible nitric oxide synthase.
IP3	Inositol triphosphate.
IRF	Interferon regulatory factor.
ITGAM	Integrin alpha M.
ITGAX	Integrin alpha X.
JAK	Janus kinase.
KCS	Keratoconjunctivitis sicca.
LAT	Linker of activation of T cells.
LGL	Large granular lymphocytes.
LH	Luteinizing hormone.
LN	Lupus nephritis.
LT	Lymphotoxin.
Lyn	Tyrosine protein kinase.
Lyp	Lymphoid specific tyrosine phosphatase.
MBL	Mannose binding lectin.
MCAF	Monocyte chemotactic and activating factor.
MCP	Monocyte chemoattractant protein.
MCP	Metacarpophalangeal
MCV	Mutated citrullinated vimentin.
MHC	Major histocompatibility complex.
MHP	Mitochondrial hyper polarization.

MMP	Matrix metalloproteinase.
MRI	Magnetic resonance imaging.
MRL	Murphy Roths Large.
mRNA	Messenger RNA.
mTOR	Mammalian target of rapamycin.
MTP	Metatarsophalangeal
MTX	Methotrexate.
NAC	N-acetylcysteine.
NeF	Nephritic factor.
NFAT	Nuclear factor of activated T cells.
NFκB	Nuclear factor kappa B.
NK	Natural killer.
nNOS	Neuronal nitric oxide synthase.
NO	Nitric oxide.
NOD	Non obese diabetic.
NSAIDs	Non steroidal anti inflammatory drugs.
OPG	Osteoprotegerin.
PAD	Peptidyl arginine deiminase.
PAN	Polyarteritis nodosa.
PBMCs	Peripheral blood mononuclear cells.
PCR	Polymerase chain reaction.
PDCD	Programmed cell death.
PGM1	Phosphoglucomutase-1.
PIP	Proximal interphalangeal.
PRL	Prolactin.
PTPN22	Protein tyrosine phosphatase, non-receptor type 22

RA	Rheumatoid arthritis.
RANKL	Receptor activator of nuclear factor kappa B.
RANTES	Regulated upon Activation, Normal T-cell Expressed, and
	Secreted.
RF	Rheumatoid factor.
RFLP	Restriction fragment length polymorphism.
RNA	Ribonucleic acid
RNP	Ribonucleoprotein.
ROI	Reactive oxygen intermediates.
RORC	Related orphan receptor.
RPR	Rapid plasma reagin.
RUNX	Runt-related transcription factor.
SCID	Severe combined immunodeficiency.
SCY	Small inducible cytokine.
SE	Shared epitope.
SIG	Small inducible gene.
SLE	Systemic lupus erythematosus.
SLEDAI	SLE disease activity index.
Sm	Smith.
SNP	Single nucleotide polymorphism.
snRNP	Small nuclear ribonucleoprotein.
SS	Sjögren syndrome.
SS	Single stranded.
STAT	Signal transducer and activator of transcription.
Syk	Spleen tyrosine kinase.
TCR	T Cell Receptor.

TFH	T follicular helper.
TGF	Transforming growth factor.
TH	T helper.
TLR	Toll like receptor.
TNF	Tumor necrosis factor.
TRAF	Tumor necrosis factor associated protein
Treg	Regulatory T cells.
UH	Ubiquitinated histone.
UV	Ultra violet.
VDRL	Venereal disease research laboratory.
WHO	World Health Organization.
ZAP	Zeta associated protein.

Introduction

Nitric oxide (NO), is a potent endogenous vasodilator, is one of the most important biological molecules, which has a role in many biological systems. It acts as a trigger, mediator or effector to a variety of biological reactions and signal transduction pathways (*Wang et al.*, 2000).

NO synthesis is tightly regulated by nitric oxide synthases (NOS), which appear in three isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). Endothelial NOS (eNOS) is a 135-kda protein, encoded on chromosome 7q35-36, consisting of 26 exons and spanning a genomic region of 21kb.it is expressed primarily in endothelial cells and in low levels in platelets. NO produced by eNOS is considered to prevent smooth muscle cell proliferation, platelet adherence and neutrophil activation and adhesion. Although a small quantity of NO protects against the adhesion of leucocytes and platelets to the blood vessel wall as a protective and anti-inflammatory agent, larger amounts of NO released by cells in response to cytokines can destroy tissues, impair cellular responses immunomodulatory role that modifies the course of diseases such as SLE by affecting functions of lymphocytes and macrophages (Heeringa et al., 1998).

Systemic lupus erythematosus (SLE) is a prototype of human autoimmune diseases and is a disorder with generalized autoimmunity of unknown aetiology, characterized by multisystemic organ involvement, polyclonal B cell activation and the production of autoantibodies. Although the aetiology of SLE is not known now, several genetic factors affected by environmental agents may contribute to the development or severity of SLE.