Role of Diffusion-weighted MR Imaging in the Evaluation of Ovarian Tumors

Thesis

Submitted For Partial Fulfillment of the M.Sc. Degree In Radio diagnosis

Ву

Safaa Ibrahim Saif El Nasr

Supervised by

Dr. Soha Talaat Hamed

Prof. of Radio diagnosis

Dr. Fatma Mohamed Awad

Assist. Prof. of Radio diagnosis

Cairo University

2012

بسم الله الرحمن الرحيم

"هَالُوا سُبْدَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنِتَ الْعَلِيمُ الْدَكِيمُ"

صدق الله العظيم سورة البقرة الآية (٣٢)

Acknowledgment

First of all I would like to thank **ALLAH** for giving me the power to complete this work, may he be generous on me and give me the knowledge to help others.

Words can never express my feelings, respect and gratitude to **Prof. Dr. Soha Talaat Hamed** Professor of Radiodiagnosis, Faculty of medicine, Cairo-University, for her continues care, support and for her invaluable guidance, constructive criticism in supervising this work.

Also special thanks for **Dr. Fatma Mohamed Awad** Assist. Prof. of Radio diagnosis, Faculty of medicine, Cairo-University for her effort and support in this thesis.

I wish to express my deep gratitude to **Dr. Sahar Mansour** Lecturer of Radiodiagnosis, for her help, concern and being always giving and caring.

It is my pleasure to express my deep appreciation to my professors and colleagues in the Radiology department, Cairo University. My especial thanks and deep appreciation to **Dr**. **Reham Osama** Assist. Lecturer for her patience and unlimited kind support. Also special thanks for women's imaging unit nurses and all MRI unit operators.

Last, but not least, I would like to express my respect, appreciation and thanks to my **Parents** and my **Brothers** for their continues praying, everlasting love and care.

Contents

Contents	Page
Abstract	I
List of abbreviations	II
List of tables	III
List of figures	IV
Introduction	V
Aim of work	VI
Review of literature:	
Anatomy of the ovary	1
Pathology of ovarian tumors	4
> Technique of pelvic MRI	10
Diffusion-Weighted Imaging (DWI)	14
MRI manifestations of ovarian tumors	25
Appearance of ovarian tumors in DWI	55
➤ Management of ovarian tumors	60
Patients & methods	64
Results	70
Case presentation	80
Discussion	
Summary and conclusion	
References	
Arabic summary	

Abstract

Ovarian cancer is a leading cause of death among women. Preoperative tissue characterization can help the surgeon to plan for adequate procedures.

DWI is one of the evolving functional MR imaging. When added and interpreted together with the conventional MR imaging, the specificity and accuracy of conventional MR imaging findings have shown to be increased.

Keywords

Ovarian cancer - Difussion Weighted Imaging - functional imaging.

List of Abbreviations

ADC : Apparent diffusion coefficient

BOT : Borderline ovarian tumors

DCE-MRI • Dynamic Contrast Enhanced MRI

DWI • Diffusion-weighted imaging

FOV • Field of view

FSE • Fast spin echo

Gd gadolinium

HCG • Human chorionic gonadotropin

MRS • Magnetic Resonance Spectroscopy

NPV • Negative predictive value

PET/CT • Positron emission tomography - computed tomography

PPV • Positive predictive value

RF • Radiofrequency

SE • Spin-echo.

SPAIR • Spectral Adiabatic Inversion Recovery

List of tables

Figure	Title	Page
2.1	Epithelial tumors of the ovary	6
2.2	Sex cord stromal tumors of the ovary	7
2.3	Germ cell tumor of the ovary.	7
2.4	TNM classification of ovarian tumors.	9
3.1	Different MR sequences for evaluating the adnexa	13
4.1	One of the protocols used for applying the DWI for the pelvis.	17
4.2	Interpretation of DWI Findings.	19
5.1	Criteria to differentiate benign versus malignant epithelial tumors.	27
5.2	Criteria to differentiate between serous and mucinous tumors:	28
5.3	Metabolites Detected with Proton MR Spectroscopy	53
9.1	Different complaints and their percentage.	72
9.2	the maximum diameters of the tumors in cm.	72
9.3	Correlation between the numbers of cases diagnosed as benign or malignant by the conventional MR imaging, DWI and their pathological diagnosis.	77
9.4	Difference between the MRI and the DWI in Sensitivity, Specificity, PPV, NPV and accuracy.	77
9.5	Comparison between the ADC values of solid component between benign and malignant tumors.	78
9.6	Comparison between the ADC values of cystic component between benign and malignant tumors.	79

List of figures

Figure	Title	Page
1.1	Normal anatomy of the female reproductive system.	1
1.2	Normal zonal anatomy in a premenopausal woman	3
2.1	Schematic drawing showing sites of origin of ovarian cancer.	5
4.1	Diagram showing diffusion of water molecules	15
4.2	Schematic illustrates the effect of a diffusion-weighted sequence on water molecules	16
5.1	serous cystadenoma of left ovary	30
5.2	Mucinous cystadenoma of the ovary	30
5.3	Borderline papillary serous tumor of the ovary	31
5.4	Endometriod carcinoma with concomitant endometrial carcinoma	32
5.5	Clear cell carcinoma of the ovary	33
5.6	Brenner tumor of the ovary	34
5.7	Granulosa cell tumor of the ovary	35
5.8	Fibrothecoma of the ovary	36
5.9	Sertoli-Leydig cell tumor of the ovary.	37
5.10	Sclerosing stromal tumor of the ovary.	39
5.11	Steroid cell tumor of the ovary.	40
5.12	Mature cystic teratoma	42
5.13	Immature teratoma	43
5.14	Dysgerminoma of the ovary.	44
5.15	Primary ovarian choriocarcinoma.	45
5.16	Bilateral metastasis to the ovaries (Krukenberg tumors) from	46
	gastric carcinoma.	
5.17	Collision tumor of the ovary.	47
5.18	Algorithm for diagnosis of ovarian mass	50
5.19	Signal intensity-time curves of benign, borderline, and invasive ovarian tumors.	52
5.20	Proton MRS in cases of malignant and benign ovarian tumor	54
6.1	DW appearance of malignant ovarian tumor	56
6.2	DW appearance of benign ovarian tumor	56
6.3	DW appearance of peritoneal deposit	57
6.4	DW appearance of lymph node in cases of recurrent ovarian cancer	58
6.5	DW appearance of post-operative changes	59
7.1	Conservative or radical surgery for treatment of BOTs	62
7.2	Algorithm for imaging of a suspected ovarian mass.	63
9.1	Chart showing different pathological types of benign tumors.	71
9.2	Chart showing different pathological types of malignant tumors.	71
9.3	Chart showing the different compositions of the tumors and their percent.	73
12.1	Algorithm showing Indications for different pelvic MRI sequences for characterization of ovarian masses (detected by US).	101

Introduction

Functional imaging is becoming increasingly important in the evaluation of cancer patients because of the limitations of morphologic imaging, particularly in the assessment of response to therapy. Recent technical advances allow the use of diffusion MR imaging in abdominal and pelvic applications after it has been established as a useful functional imaging tool in neurologic applications for a number of years. (Whittaker et al, 2009)

This unique noninvasive modality has demonstrated the capacity to help discriminate between benign and malignant lesions, increase the contrast between lesions and surrounding tissues, and improve the detection and delineation of peritoneal implants at both initial staging and follow-up. Moreover, diffusion-weighted imaging provides quantitative information about tissue cellularity that may be used to distinguish viable tumors from treatment-related changes (**Kyriazi et al, 2010**)

When diffusion-weighted MR imaging is used in gynecologic applications, cancers have shown lower apparent diffusion coefficient (ADC) values. Increasing ADC values is noted in carcinomas responding to radiation therapy, so it can be used as a biomarker for treatment response, and in the evaluation of recurrence, discriminating localized from multifocal disease which is a critical factor in opting for secondary cytoreduction (Inada et al, 2008), (McVeigh et al, 2008).

As for peritoneal implants from ovarian cancer, the diagnosis represents a privilege for diffusion weighted MR imaging, as the small seeds invaginated within peritoneal reflections, or coating the serosal surface of intestinal loops and solid viscera, are often masked by the similarity of their attenuation or signal intensity to that of adjacent structures using CT or conventional MRI. On diffusion-weighted imaging, malignant deposits on the visceral peritoneum are more conspicuous because of signal suppression from surrounding ascites, bowel contents, and fat (Low et al, 2009)

Introduction

Avoiding the potential pitfalls, of the technique, can be accomplished when diffusion weighted images are interpreted in association with anatomic MR images. Increasing familiarity with diffusion coefficient calculation and software manipulation, will allow radiologists to provide new information for the diagnosis of patients with known or suspected gynecologic malignancies (Fujii et al, 2008)

Limitations of diffusion weighted MR imaging, in abdomen and pelvis, due to motion and susceptibility artifacts has been overcome by the development of new imaging techniques, particularly novel methods of data acquisition and parallel imaging, allowing much faster data acquisition with fewer artifacts, resulting in significant improvement in image quality in body applications (Qayyum, 2009)

Aim of the work

This study aims at the reviewing and emphasizing the role of diffusion-weighted MR imaging in the diagnosis of ovarian tumors.

Anatomy of the ovary

Gross Anatomy

The ovaries are almond shaped but may vary in size, position, and appearance, depending on the age and the reproductive activities of the individual (*DeLancey et al, 1997*).

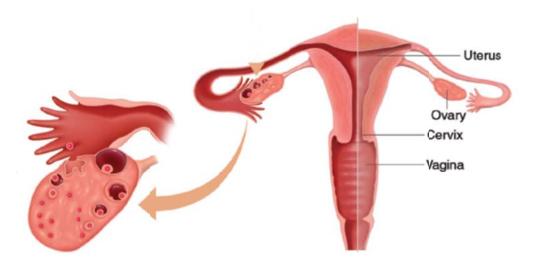


Fig (1.1): showing normal anatomy of the female reproductive system (*Tanakaet al*, 2004)

The normal adult woman ovaries range from 2.5–5 cm long, 1.5–3 cm thick, and 0.7–1.5 cm wide, with a weight of 3–8 gm. (*kleeman*, 2007).

The ovary is encapsulated by a thin whitish fibrous Capsule called the tunica albuginea. (*Tortora et al, 1998*).

The ovary can be divided into:

- Outer cortex which consists of a cellular connective tissue stroma in which the ovarian follicles are embedded.
- Inner medulla which is composed of loose connective tissue which contains blood vessels and nerves (*Kleeman*, 2007).

The ovary is attached by the mesovarium to the posterior surface of the broad ligament. Further support is given by the ovarian ligament proper and the suspensory ligament of the ovary that is continuous with the broad ligament attaching to the pelvic sidewall and in which the ovarian vessels and lymphatics run (*Federle et al*, 2006).

Blood supply of the ovary

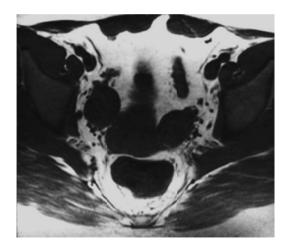
The ovarian artery originates from the abdominal aorta, below the level of the renal arteries. The ovarian arteries supply the ovaries, uterine tubes, the upper portion of the body and fundus of the uterus, and anastomose with the uterine arteries (*Winkler et al, 1986*).

The ovarian vein is typically single but may be multiple and will fuse forming single vein which accompanies the ovarian artery along its retroperitoneal course. The right vein drains into the inferior vena cava and the left one drains into the left renal vein (*Tukeva et al, 1999*).

Lymphatic drainage of the ovary

The ovarian lymphatics ascend with the ovarian vessels drain almost exclusively into to the para-aortic lymph nodes, close to the origin of the ovarian arteries (*Reynolds et al*, 2006).

Other small branches drain via the broad ligament to the external, internal, and common iliac groups of nodes (*Livengood et al*, 2006).


MR appearance of the ovary (Paul et al, 2004)

On T1WIs:

• The adult ovary appears of intermediate signal intensity with low-signal follicles (unless hemorrhagic).

On T2WIs:

- Multiple high-signal follicles of varying sizes within low signal intensity central stroma
- Low-signal intensity capsule.

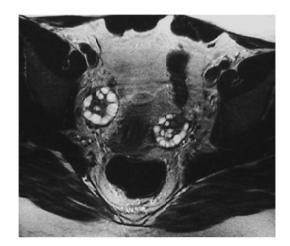


Fig (a) Fig (b)

Fig.(1.2). Normal zonal anatomy in a premenopausal woman. Axial T1-WI (a) and axial T2-WI (b). Both ovaries display multiple small follicles in subcortical location which show intermediate signal on T1-weighted images and very bright signal on the T2-weighted images (*Paul et al*, 2004)

Pathology of Ovarian Tumors

Incidence

Ovarian cancer is the fifth leading cause of cancer death among women after (lung, breast, colorectal, and pancreatic cancers) and has a high likelihood of recurrence despite aggressive treatment strategies (*Hongju et al, 2011*).

is considered the second most common gynecologic (after cervical Cancer) malignancy and most of women diagnosed in late stages of the disease, (stage III or stage IV cancer), with five year survival reaching 20%. Less than 30% of women are diagnosed with stage I ovarian cancer, and, of these, 90% will survive to five years. (Hippisley-Cox et al, 2012).

Epidemiology

The diagnosis is primarily in women above the age of 50. Its diagnosis before the age of 30 is rare, even among women affected by hereditary syndromes. After the age of 30, the incidence of ovarian cancer starts to rise (*Chu et al*, 2008).

Risk Factors

- Positive family history.
- Genetic syndromes (Folsom et al, 2004).
- Nulliparity.
- Childbirth after 35 years.
- Late menopause.
- Estrogen replacement therapy for more than five years.
- Early onset of menses (Sam et al, 2002).