Ocular Applications Of Pentacam

Essay

Submitted in partial fulfillment of Master Degree in Ophthalmology

By

Mohammad Hassan Shabana

M.B.B.Ch

Supervised by

Prof.Dr. Ahmed Abdalla Darwish

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Dr.Mohammad Abdelhameed Abdelfatah Kabeel

Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2009

Heknowledgment

Praise to Allah who gave me everything and who allowed this work to be done.

It is indeed an honor to me to supervised by Prof. Dr. / Ahmed Abdalla Darwish,

Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, who was really so supportive & helpful to me in this study.

I'm really grateful to **Dr. /Mohammad Abdelhameed Abdelfatah Kabeel**, Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, for his valuable advices and continuous efforts and his guidance to me throughout this study.

Of course, I can't find enough words to thank my parents and my family for their endless support.

Abbreviations

3D	Three Dimensional
ACD	Anterior Chamber Depth
AC M	AC Master Apparatus
BFS	Best-Fit-Sphere
С	Cortical cataract
CBDS	Capsular Bag Distension
	Syndrome
CCT	Central Corneal Thickness
CD	Cell Density
CM 3910	Double-Scheimpflug Camera
CR	Coefficient of Repeatability
СТ	Corneal Thickness
D	Diopters
ER	Endoplasmic Reticulum
HR	High Resolution
ICL	Implantable Contact Lens
IOL	Intraocular Lens
IOP	Intraocular Pressure
LASEK	laser-Assisted Sub Epithelial Keratectomy
LASIK	Laser in Situ Keratomileusis
LOCS III	Lens Opacities Classification System III
LPI	Laser Peripheral Iridotomy
NC	Nuclear Color
Nd: YAG	Neodymium-doped Yttrium Aluminium
	Garnet
NO	Nuclear Opalescence
OCT	Optical Coherence Tomography
OD	Right
OLCR	OLCR pachymeter
OS	Left
P	Posterior subcapsular cataract
PAC	Primary Angle Closure
PACD	Peripheral Anterior Chamber Depth
PACG	Primary Angle-Closure Glaucoma
PAR	Posterior Apical Radius
PAR CTS	PAR Corneal Topography System

PAS	Periodic Acid –Schiff
PCO	Posterior Capsule Opacification
PEA	Phacoemulsification aspiration
PIOL	Phakic Intraocular Lenses
PMD	Pellucid Marginal Degeneration
PMMA	Polymethyl Methacrylate
PMN	Poly Morph Nuclear leukocyte
PKP	Penetrating Keratoplasty
PRK	Photorefractive Keratectomy
RK	Radial Keratotomy
SE	Spherical Equivalent
S/PLaser	Self-Pulsating Laser
TMS	Topographic Modeling System
UBM	Ultrasound Biomicroscope
US	Ultrasound
WTW	White-to-white distance

LIST OF FIGURES

Figs.	Subject	Page
Fig.(1)	Anterior segment anatomy.	3
Fig.(2)	The corneal layers	4
Fig.(3)	Endothelium	8
Fig.(4)	Corneal endothelial pump.	9
Fig.(5)	Normal corneal topography	12
Fig.(6)	Some topography units create both elevation and axial maps, and provide statistical indices.	13
Fig.(7)	Placido image.	14
Fig.(8)	AstraMax system's polar grid.	17
Fig.(9)	Raw AstraMax image of a keratoconic cornea.	18
Fig.(10)	THE PAR CORNEAL TOPOGRAPHY SYSTEM	20
Fig.(11)	Orbscan	22
Fig.(12)	Typical Orbscan quad map	23
Fig.(13)	Pentacam Scheimpflug image	27
Fig.(14)	Pentacam elevation map.	28
Fig.(15)	An ultrasound image of a cornea S/P LASIK.	28
Fig.(16)	Pentacam.	31
Fig.(17)	Orbscan.	33
Fig.(18)	Carl Zeiss Meditec.	34
Fig.(19)	This post-LASIK image.	36
Fig.(20)	Patient referred after sustaining a buttonhole.	38
Fig.(21)	The Pentacam composite shows four maps at once.	41
Fig.(22)	The same eye imaged through two different references axes seems to show astigmatism or keratoconus.	42

Fig.(23)	Elevation points above the best-fit sphere are positive; numbers below the best-fit sphere are negative.	43
Fig.(24)	Astigmatism has a flat axis that falls above the best fit sphere and a steep axis that falls below it.	44
Fig.(25)	Ectatic eyes often have islands of elevation above the best-fit sphere.	45
Fig.(26)	Cone is often mistaken for pellucid marginal degeneration.	46
Fig.(27)	Pentacam	47
Fig.(28)	Dimensions of Pentacam apparatus.	51
Fig.(29)	Pentacam is useful in planning and screening Intacs for keratoconus patients.	52
Fig.(30)	Anterior elevation map of apatient with keratoconus.	55
Fig.(31)	BFS calculation.	57
Fig.(32)	A patient with early keratoconus.	58
Fig.(33)	Elevation map of a normal cornea.	58
Fig.(34)	Bar graph showing the relative change in elevation for normal eyes (green) and keratoconics (red).	60
Fig.(35)	Mean and 95% CI of CCT measurements by US, Orbscan, Pentacam, and Visante	63
Fig.(36)	Pentacam generated Scheimpflug image showing the placement of one intracorneal ring segment.	66
Fig.(37)	Pentacam compare image of results of Ferrara Rings Pre and Postoperative.	67
Fig.(38)	Posterior capsule opacification measurements.	74
Fig.(39)	Pentacam utility in diagnosing	77
	Capsular Bag Distension Syndrome.	

Fig.(40)	3-dimension image showing future location of PIOL in the anterior chamber.	81
Fig.(41)	ACV for diagnosing eyes with narrow angles.	81
Fig.(42)	Nd: YAG Laser Iridotomy.	84
Fig.(43)	Preoperative Pentacam image.	85
Fig.(44)	Postoperative Pentacam image of the right eye.	85
Fig.(45)	Preoperative Pentacam image of the ACD.	86
Fig.(46)	Postoperative Pentacam image of the ACD.	86

CONTENTS

Subjects	Pages
AIM OF THE WORK	1
Anatomy of the cornea	
Macroscopic anatomy	2
Microscopic anatomy	4
Anatomy of The tear film	10
Functions of tear film	11
HISTORY OF TOPOGRAPHY	
Introduction	12
Normal Corneal topography	12
Development of Topographic Technologies	14
PLACIDO DISK IMAGING	14
ASTRAMAX THREE-DIMENSIONAL	17
TOPOGRAPHY	
THE PAR CORNEAL TOPOGRAPHY SYSTEM AND	19
RASTERPHOTOGRAPHY	
SLIT-SCANNING TOPOGRAPHY	22
SCHEIMPFLUG IMAGING	25
New High Resolution (HR) Pentacam	30
DIFFERENCE BETWEEN PENTACAM AND	
ORBSCAN	
DIFFERENCE BETWEEN PENTACAM	
AND ORBSCAN	31
DIFFERENCES BETWEEN SYSTEMS	32
Clinical examples of differences between	36
Pentacam and orbscan	

READING THE PENTACAM	
MAPS	
Reasons of accuracy of Pentacam than other	41
systems	
CURVATURE MAPS NOT THE MOST	41
INFORMATIVE	
POSTERIOR ELEVATION MUST BE ACCURATE	43
HIGHER ACCURACY IN DESCRIBING ECTATIC	43
MAPS	
Technical data of oculus	
Pentacam	
Introduction	47
TECHNICAL DATA OF OCULUS Pentacam	48
Scheimpflug Camera	
The information provided by the Pentacam	49
Ocular applications of Pentacam	
Corneal Pathologies	52
Assessement of Ectasia	53
Central corneal thickness measurement using	61
Pentacam pachymetry after laser in situ	
keratomileusis for myopia	
Repeatability of corneal parameters with	64
Pentacam after laser in situ keratomileusis	
The Pentacam Application for Intrastromal	65
Segment Ring	

Estimation of true corneal power and Improved	68
IOL Calculations after kerato- refractive surgery in	
eyes requiring cataract surgery	
Phacoemulsification Associated Corneal Damage	73
Evaluated by Corneal Volume	
Posterior Capsule Opacification Measurements	74
Assessment of Lens Density	75
IOL Power Calculations Using the Pentacam	77
Assessment of Anterior Chamber	78
Application of Pentacam in Anterior Chamber	79
Measurements for Phakic IOL Surgery	
Glaucoma Screening	81
Medical applications of Pentacam in special cases	82
Pentacam in Primary Angle Closure (PAC)	82
Pentacam assessment of angle structures before	84
and after cataract surgery in Nanophthalmos	
Summary	87
References	90
ARABIC SUMMARY	-

Introduction

Introduction

Pentacam is a multipurpose instrument that is capable of external ocular photography, corneal pachymetry, corneal topography, densitometry and anterior chamber analysis.

The Pentacam imaging device has been operational in ophthalmic practice since it was approved for use in the United States in 2004. The Pentacam is considered as a multifunctional imaging device by the manufacturer. The reliability of Pentacam in measuring central corneal thickness (CCT) and anterior chamber depth (ACD) have been rigorously tested (Barakana et al, 2005). Several studies report that the Pentacam has excellent reliability in measuring CCT and ACD in normal and keratoconus populations. The repeatability of posterior corneal elevation was also reported in a recent publication (Chen and Lam, 2007).

The Pentacam allows fast, noncontact examination of the anterior eye segment while the patient is sitting in front of the camera, thus providing good patient comfort and preventing application of local anesthetics and corneal erosions. However, patients have to be able to fixate while the measurement is being made, which can be a problem for children, older patients or patients with nystagmus. (Rufer et al, 2005).

Introduction

The Pentacam (Oculus, Inc., Lynnwood, Wash., USA) utilizes Scheimpflug imaging. It is a rotating Scheimpflug camera that provides 50 Scheimpflug images during one scan in less than 2 seconds with 500 true elevation points per image. The Pentacam has two integrated cameras. One is located in the center for the purposes of detection of the size and orientation of the pupil, and to control fixation. The second is mounted on the rotating wheel to capture images of the anterior segment. The Scheimpflug image is a complete picture from the anterior surface of the cornea to the posterior surface of the lens.

The slit images are photographed on an angle from 0 to 180 degrees to avoid shadows from the nose. It generates 25,000 true elevation points for each surface, including the center of the cornea. Possible eye movements are captured and corrected internally (Gerste, 2004).

The Pentacam rotating Scheimpflug camera is useful for screening patients because important parameters, especially chamber angle in different positions, ACD, pachymetry, corneal radii and diameter and lens position can be evaluated in examination within a very short period with good reliability (Devereux et al, 2000).

Aim of the work

This study reviews the Pentacam corneal topography system, which is considered the gold standard for evaluating the anterior segment of the eye by a rotating scheimpflug camera.

Anatomy of the cornea

<u> Macroscopic anatomy:</u>

The transparent cornea forms the anterior one sixth of the eyeball. (Bron et al, 1997).

Because its curvature is greater than the rest of the eye-ball, a slight sulcus, the sulcus sclera, marks the junction of the cornea with the sclera. Anteriorly, the cornea is convex but somewhat elliptical in shape, although the dimensions of the cornea vary considerably from one person to another, the approximate measurements are about 10.6 mm vertically but about 11.7 mm horizontally. (Rufer et al, 2005).

Posteriorly the cornea is concave, measuring about 11.7 mm in diameter. (Bron et al, 1997).

The cornea is thinnest at its center, measuring about 0.5-0.6mm and thicker at the periphery measuring about 0.7 mm. (Bron et al, 1997).

The radius of curvature of the anterior surface of the cornea is about 7.7mm; that of the posterior surface, 6.9mm. (Bron et al, 1997).

The anterior surface is frequently more curved in the vertical than in the horizontal planes.

The cornea is the main structure responsible for the refraction of light entering the eye. It separates the air, with a refractive index of 1.00, from the aqueous humor, the refractive index of 1.33. (Bron et al, 1997).

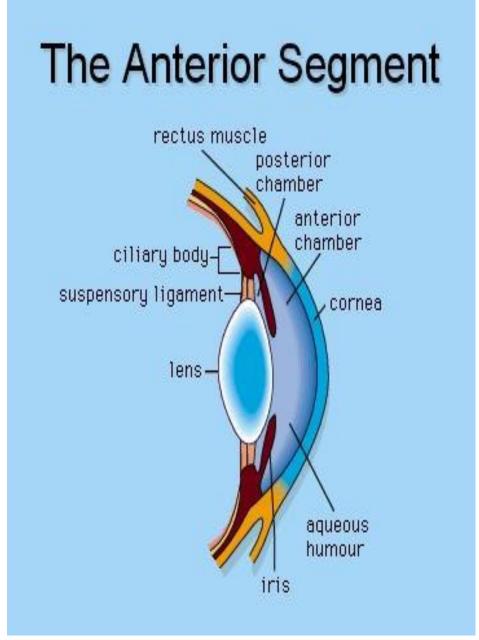


Figure 1. Anterior segment anatomy. (Rufer et al, 2005)