Biological Therapy in Ophthalmology

An essay submitted for Partial fulfillment of Master Degree in Ophthalmology

By

Enas Abdel haleem Moustafa Mourad

M.B., B. Ch.

Supervised by

Prof. Dr. Emad Abd-El Aal Sawaby

Professor of Ophthalmology
Faculty of Medicine
Cairo University

Dr.Nahla Borhan Abu Hussein

Assistant professor of Ophthalmology
Faculty of Medicine
Cairo University

Dr.Ahmed Abd-El Azim Abd-El Kader

Lecturer of Ophthalmology
Faculty of Medicine
Cairo University

2012

<u>ACKNOWLEDGMENTS</u>

All praise goes to ALLAH, the most merciful and mightiest, for all his great blessings.

First I would like to dedicate this work to my parents , without them none of this would have been possible.

I would like to express my deep appreciation to Professor Dr Emad Abd-El Aal Sawaby for his overwhelming kindness, fatherly support, his guidance and endless cooperation throughout this work.

I am deeply grateful to Dr Nahla Borhan Abu Hussein for his constant support and sincere advice. Her wisdom and her keenness for high standards of performance have always guided me.

A very sincere thank you to Dr Ahmed Abd El-Azim Abd El-Kader, learning from him and working with him have always been a great pleasure.

Abstract

The application of the biological agents in certain aggressive types of ocular inflammation, such as *Behcet's* disease, represents a main topic in uveitis treatment. Adalimumab has shown a more comparable efficacy than infliximab in *Behcet's* disease, offering a better patient compliance due to the SQ administration. On the other hand, the limited number of trials available is limiting the use of adalimumab to those cases, which are not responding to the standard of care.

An important issue for the biological agents is represented by the pediatric use: the drugs seems to be better tolerated by children and did not show significant side effects during the treatment.

Ky words;

Biological Therapy in Ophthalmology

Table of Contents

Aim	of the workI
List	of figuresII
List	of tablesV
List	of abbreviationsVI
Intro	oduction2
Basi	c immunology6
0	Classification of lymphocytes
Phar	macology& pharmacodynamics16
0	Classification of biological therapy17
Uses	in ophthalmology31
0 0 0 0	General properties
Side	effects of the drugs76
Refe	rences80
Sum	mary103
Aral	nic summary

Aim of the work

To review the uses of biological therapy in systemic diseases that Present by eye manifestations and isolated eye diseases.

We will also review the side effects of biological therapy.

List of Figures

Figures No.		Page
Fig. 1	The principal mechanisms of innate and adaptive immunity.	6
Fig. 2	Classes of lymphocytes.	7
Fig. 3	Polymorphnuclear leukocytes in Acute inflammation.	13
Fig. 4	Granulomatous inflammation.	14
Fig. 5	Clinically observed epithelioid cells collections in uveitis	15
Fig. 6	Etanercept.	19
Fig. 7	Inflixmab.	21
Fig. 8	Adalimumab.	23
Fig. 9	Intron A vial.	29
Fig. 10	Roferon-A vial.	29
Fig. 11	Acute HLA-B27 positive anterior uveitis	38
Fig. 12	Ankylosing Spondylitis eye signs	39
Fig. 13	Juvenile Idiopathic Arthritis JIA	42
Fig. 14	Vogt Koyanagi Harada syndrome.	45
Fig. 15	Behcet's Syndrome, mucous membrane ulcer.	47

Fig. 16	Behcet's syndrome(ocular manifestations)	48
Fig. 17	Effect of treatment with infliximab on vitritis	49
Fig. 18	Effect of treatment with infliximab on papillitis	49
Fig. 19	Human recombinant interferon alfa-2a in the treatment of ocular Behçet's disease	50
Fig. 20	Overview of the efficacy of IFN treatment in the 24 patients.	53
Fig. 21	Fluorescein angiography of inflammatory macular edema	54
Fig. 22	Optical coherence tomography of inflammatory macular edema	54
Fig. 23	Schematic diagram of HSV life cycle in the host.	55
Fig. 24	Perforated mooren's ulcer.	56
Fig. 25	Fundus picture of optic nerve head	58
Fig. 26	Autoimmune aetio-pathogenesis of primary Sjögren's syndrome	61
Fig. 27	Mean change in all groups at weeks 4, 8, and 12.	61
Fig. 28	Pathological picture of CNV	62
Fig. 29	The progression of human papilloma virus infected cells	66
Fig. 30	Melanoma of the right bulbar conjunctiva.	67

Fig. 31	Treatment of Conjunctival lymphoma with topical INF_{2b}	69
Fig. 32	Retinoblastoma fundus picture	70
Fig. 33	Treatment of Basal Cell Carcinoma INF _{2b}	72
Fig. 34	Squamous cell carcinoma of the lower eyelid margin	74
Fig. 35	Hemangioma histological cut section	74
Fig. 36	Capillary hemangioma of the left upper eye lid	75
Fig. 37	Fundus photography of multiple cotton wool spots	86
Fig. 38	Fundus photography of a single resolving cotton wool spot	86

List of Tables

Tables No.		Page
Table 1	The importance of immune system	6
Table 2	Cytokines of innate immunity	9
Table 3	Properties of the major cytokines produced by CD 4 ⁺ helper T lymphocytes	10
Table 4	Biologic actions of selected T cell cytokines	10
Table 5	Types of hypersensitivity reactions	12
Table 6	Summary of the use of biological therapy in uvietis	36
Table 7	Side effects of IFN	83

List of Abbreviations

5-FU	5-fluorouracil
AMD	Age related macular degeneration
ANA	Antinuclear Antibody
APCs	Antigen presenting cells
AS	Ankylosing spondylitis
BCC	Basal cell carcinoma
BD	Behcet' disease
CHAMPIONS	The controlled high risk avonex multiple sclerosis prevention study in ongoing neurologic surveillance
CHAMPS	The controlled high-risk subjects avonex multiple sclerosis prevention study
CL	Clearance
C_{MAX}	Maximum serum concentration
CME	Cystoid macular edema
CNV	Choroidal neovascularization
FDA	Food and drug administration
HLAB27	Human leukocytic antigen B27
HSV1	Herpes simplex virus 1
IBD	Inflammatory bowel disease

IGE	Immunoglobulin E
IL	Interleukins
INF	Interferon
JIA	Juvenile idiopathic arthritis
JRA	Juvenile rheumatoid arthritis
MIF	Migration inhibition factor
MS	Multiple sclerosis
RPE	Retinal pigment epithelium
SPA	Spondeloarthropathy
ТВ	Tuberculosis
TCR	T- cell receptor
TNF	Tumour Necrosis Factor
VKHS	Vogt Koyanagi Harada Syndrome

Introduction

Biological therapy:

It is a type of treatment stimulates or restores the ability of the natural immune (defense) system to fight infection and disease.

Biological therapy is thus any form of treatment that uses the body's natural abilities that constitute the immune system to fight infection and disease.

(Rosenbaum JT, 2010)

Types of Biological Therapy

There are two basic categories of biological therapy: immunotherapy and cytotoxic therapy.

Immunotherapy uses a variety of methods and drugs to manipulate the immune system. This creates a hostile environment for the existence or growth of cancer in the body.

Cytotoxic therapy involves changing the cancer cells' biology so that they become weak and die. (*Moorthy*, 2009).

(1) Immunotherapy

Immunotherapy can be either active or passive. Active immunotherapy involves setting an immune response in the cancer patient to fight cancer cells. In passive immunotherapy, immune molecules are given to patients who do not produce them on their own. Both approaches can be specific or nonspecific

- Specific Active Immunotherapy: stimulate a specific immune response.
- **Nonspecific Active immunotherapy**: a general immune response, activating a wide range of Immune cells. The agents used in this method include interferons and interleukins (IL-2 and IL-12, for example)

Introduction

-Passive Immunotherapy: adoptive immunotherapy that the patient adopts an immune response that has been developed in a test tube.

(2) Cytotoxic Therapy (Tumor Cell Modulation)

The second main category of biological therapy is sometimes called cytotoxic (cell-killing) therapy. This approach uses proteins called cytotoxins that are produced by the body's cells to attack the cancer either by destroying the cancer cells or by making it difficult for them to grow and reproduce. Another term for this approach is tumor cell modulation.

Tumor cell modulation changes the cancer cell's biology so that they become weak and die. Some of the agents used in this approach are called cytotoxins. Perhaps the best-known cytotoxin in this category is tumor necrosis factor (TNF), a toxin secreted by activated macrophages to selectively kill tumor cells, principally by interfering with their blood supply.

TNF is being used to treat conditions such as Crohn's disease and rheumatoid arthritis. Etanercept (Enbrel) and infliximab (Remicade) are examples of commercially available injectable TNF- blocking treatments.

<u>Uses of biological therapy in ophthalmology:</u>

Biological therapy used principally in cancer centers, organ transplantation, rheumatology therapy but they have not been licensed for treatment of ocular inflammatory conditions but clinical trials are currently in progress.

Introduction

Uses in ophthalmology include:

- Noninfectious inflammatory uveitis. The main use of biological therapy.
- -Can be used in any autoimmune disorder eg, peripheral ulcerative keratitis,
- Inflammatory macular edema
- -In pediatric age group eg, treatment of juvenile idiopathic arthritis.

Uveitis by strict definition implies an inflammation of the uveal tract. However, the term is now used to describe many forms of intraocular inflammation involving not only the uveal tract but also the retina and its vessels (*Jabs et al.*, 2005).

The choice of treatment for noninfectious inflammatory uveitis depends on several factors. The diagnosis, the severity of the disease, the presence of concurrent systemic disease requiring immunosuppression, the duration of inflammation, the reversibility of visual loss and whether it is unilateral or bilateral are the main indicators. Other factors that need to be considered when choosing treatments are due to drug-related side effects and interactions, including the general health of the patient (e.g., the presence of diabetes, renal failure, liver dysfunction and hypertension), and patient compliance to medication and follow-up. There have been changes in the management of uveitis over the last few years, with immunomodulatory agents and new intraocular delivery systems (*Fraser and Pavesio*, 2008).