EFFECT OF SENSORY MOTOR TRAINING AND ELECTRICAL RUSSIAN CURRENT ON KNEE OSTEO-ARTHRITIC PATIENTS

By

EMAD ELDIN MOHAMED ABD ELATIEF IBRAHEEM

B.Sc., in Physical Therapy, Cairo University, 2006

Thesis

Submitted to Basic science department for the Requirement of Master Degree in Physical therapy,

Faculty of physical therapy Cairo University 2010

Supervisors

Prof. Dr. AMAL FAWZY AHMED

Assistant professor of Physical Therapy

Basic Science Department

Faculty of physical Therapy

Cairo University

Prof. Dr. ALAA ELDIN BALBAA

Assistant professor of Physical therapy

Department for Musculoskeletal

Disorders and its Surgery

Faculty of Physical Therapy

Cairo University

Prof. Dr. AHMED LABEB MOHAMED

Assistant Professor of Orthopeadic

Department and its Surgery

Faculty of Medicine

Cairo University

EFFECT OF SENSORY MOTOR TRAINING AND ELECTRICAL RUSSIAN CURRENT ON KNEE OSTEO-ARTHRITIC PATIENTS

 $\mathbf{B}\mathbf{y}$

EMAD ELDIN MOHAMED ABD ELATIEF IBRAHEEM

Submitted to Basic science department for the Requirement of Master Degree in Physical therapy, Faculty of physical therapy
Cairo University
2010

Supervisors

Prof. Dr. AMAL FAWZY AHMED

Assistant professor of Physical Therapy

Basic Science Department

Faculty of physical Therapy

Cairo University

Prof. Dr. ALAA ELDIN BALBAA

Assistant professor of Physical therapy

Department for Musculoskeletal

Disorders and its Surgery

Faculty of Physical Therapy

Cairo University

Prof. Dr. AHMED LABEB MOHAMED

Assistant Professor of Orthopeadic

Department and its Surgery

Faculty of Medicine

Cairo University

Effect of Sensory motor training and Electrical Russian current on osteoarthritic patients. Emad Eldin Mohamed Abd Elateif; Supervisors: Prof. Dr. Amal Fawzy Ahmed, Cairo University, Faculty of Physical Therapy, Department of Basic science, Prof. Dr. Alaa ELdin Abd Elhakeem Balba, Cairo University, Faculty of physical Therapy, Department of Musculoskeletal disorders and its surgery, Prof Dr. Ahmed labib Mohamed, kasr Eleine, faculty of medicine, 2009. Master Thesis.

ABSTRACT

The purpose: of study was to investigate effect of sensory motor training and electrical Russian current on knee osteoarthritic patients. Subjects: Sixty patients from both sexes were assigned into four equal groups with age range from 30-50 years. Methods: Measuring muscle torque, proprioceptive acuity, pain level, and functional activities were performed before and after treatment. Group A received traditional exercise program .Group B received the same program in addition to Russian current stimulation. Group C the same program plus sensory motor training. Group D received sensory motor training and electrical Russian current plus traditional exercise program three times per week for eighteen sessions. Results: The results revealed that there was a significant improvement in all measured parameters with the highest results in group D (p<0.05). Conclusion: Sensory motor training and electrical Russian current plus traditional exercise program is effective method in treatment of osteoarthritis.

Key word: Sensory motor system, Russian current, Osteoarthritis.

ACKNOWLEDGMENT

First and above all, I pray thanking God for his blessing and giving me the patience and effort to complete and achieve this work.

I would like to acknowledge *Prof. Dr. Amal Fawzy* Assistant professor in Department of Basic science, Faculty of Physical Therapy, Cairo University, for her supervision, valuable instruction, careful reading, and wise counsel, unlimited encouragement throughout the whole work from the beginning to the end, great guidance and practical supervision throughout all the stages of this thesis.

I would like to thank *Prof. Dr. Alaa Eldin Abd Elhakeem Balba* Assistant professor in Department of musculoskeletal disorders and Its surgery, Faculty of Physical Therapy, Cairo University, for his continues encouragement, valuable assistance, and beneficial remarks and kind advises during reviewing of this work. He closely followed the preparation and conduction of this work.

I would like to express my deepest thanks and sincere appreciation to *Prof. Dr. Ahmed labieb*, Assistant professor in Department of orthopedic and its surgery, Faculty of Medicine,

Cairo University, for his valuable comments, help and motivation.

I would like to express my deepest thanks and gratitude to *Prof. Dr. Omaima Mohamed Ali Kattaba* Chairperson of Department of Basic science, Faculty of Physical Therapy, Cairo University, for her support.

I can't find the right words that can express my deep feelings of appreciation and gratitude to *Prof. Dr. Salam Mohamed EL-Hafez Assistant professor of biomechanics*, Faculty of Physical Therapy, Cairo University, for here continues support, valuable advises and encouragement throughout all stages of this work.

My Thanks extends to **DR.** Mohamed Abd El-Fattah and **DR.** Ahmed Atia Lecturer and Assistant lecturer in Department of Growth and Development Disturbance and Its surgery in Pediatrics and Biomechanics, Faculty of Physical Therapy, October 6 University, for their support in this work.

Special thanks to *all Professors, Lecturer and Colleagues* in the Department of Basic science, Faculty of Physical Therapy, Cairo University, for their advices and continuous help.

Contents

	Page
Contents	I
List of fingers	IV
List of tables	VII
List of abbreviation	VIII
INTRODUCTION (Chapter I)	
Introduction	1
Statement of the problem	7
Purpose of the study	7
Justification of the study	8
Delimitation	9
Limitation	9
Alternate hypothesis	10
Basic assumption	10
Terminology	11
LITERATURE REVIEW (Chapter II)	
Knee and its articulation	13
Capsule of knee joint	16
Structure inside knee joint	17
Medial semi-lunar cartilage	18
Lateral semi-lunar cartilage	19
Biomechanics of movement	20
Muscles of thigh	22
Anatomy, and morphology, of joint receptors	24
Receptors as detectors of joint angle	33

Kinesthesia	36
Pathology and pathophysiology of osteoarthritis	38
Characteristics changes of osteoarthritis	42
Phases of osteoarthritis	43
Types of osteoarthritis	45
Primary osteoarthritis	45
Secondary osteoarthritis	45
Factors affecting osteoarthritis	47
Progression of symptoms	49
Radiological findings osteoarthritis	49
Incidence, etiology, and prognosis of osteoarthritis	51
Neuromuscular control system	52
Neuromuscular control and feedback mechanism	55
Role of sensory motor system	60
Management of osteoarthritis	62
Sensory motor training	65
Russian current	70
Theories of neuromuscular electrical stimulation	75
Muscle torque	77
Methods, Materials, Subjects (Chapter III)	
Design of the study	82
Selection of subjects	82
Instrumentation	85
Phyaction device	85
Biodex system	85

Evaluative procedures	96
Treatment procedures	99
Sensory motor program	103
Data collection	116
RESULT (Chapter IV)	
Pain level	120
Post-hoc Test for Pain Level	123
Functional disability	124
Post-hoc Test for functional disability	127
Proprioceptive acuity	129
Post-hoc Test for proprioceptive acuity	132
Quadriceps muscle torque	134
Post-hoc Test for quadriceps muscle torque	137
DISCUSSION	144
Chapter VI	
Summary	169
Finding	170
Conclusion	171
Implementation	172
Recommendation	173
Chapter VII	
References	174
Appendix A	200
Appendix B	201
Appendix C	202
Arabic summary	

List of abbreviation

AC	Alternate current
ACL	Anterior cruciate ligament
ADL	Activity of daily living
AGEs	Advanced glycation end products
AJP	Active joint position
AMF	Amplitude modulated- frequency
ANOVA	Analysis of variance
CL	Cruciate Ligament
CM	Centimeter
CNS	Central nervous system
CVA	Cerebrovascular accident
DC	Dorsal columns
DLF	Dorsolateral funiculus
ECM	Extracellular matrix
EIT	Electrical induced torque
ES	Electrical stimulation
GTOs	Golgi tendon organ
HZ	Hertz
IFC	Interferential current
IP	Interphalangeal
KHZ	kilohertz
KS	Keratan sulfate
LCN	Lateral cervical nucleus

MEIT	Maximum Electrical induced torque
MS	Millisecond
MT	Muscle torque
MVIC	Maximum voluntary isometric contraction
NMES	Neuromuscular electrical stimulation
NSANDs	Non steroidal anti-inflamatory drugs
OA	Osteoarthritis
PA	Proprioceptive acuity
PC	Pulsed current
PCL	Posterior cureciate ligament
PNS	Peripheral nervous system
PT	Peak torque
RA	Rapidly Adapting
RCS	Russian Current Stimulation
ROM	Range of motion
SD	Standard Deviation
SDH	Succinate dehydrogenaze
SIJ	Sacroiliac joint
SL	Slowly Adapting
SMT	Sensory motor system
TENS	Transcutaneus Electrical nerve stimulation
TMJ	Tempomandibular joint
VPL	Ventral posterior lateral

List of figures

Fig (1): Right knee joint. Anterior view	13
Fig (2): Right knee joint. Posterior view	14
Fig (3): Capsule of right knee-joint. Lateral aspect	16
Fig (4): Capsule of right knee-joint. Posterior aspect	17
Fig (5): Head of tibia	19
Fig (6): Muscles of thigh	23
Fig (7): Quadriceps muscle	23
Fig (8): Type I receptors and parent axon	26
Fig (9): Type II receptors and parent axon	26
Fig (10): Type III receptors and parent axon	28
Fig (11): Type IV receptors and parent axon	29
Fig (12): Muscle spindle and golgi tendon organ	31
Fig (13): Diagram of peripheral receptors	36
Fig (14): Affected sites of osteoarthritis	39
Fig (15): Diagram of osteoarthritis pathology	41
Fig (16): Changes of arthritic joint	42
Fig (17): Degeneration of hyaline cartilage	44
Fig (18): X-ray showing osteoarthritis in the left knee	50
Fig (19): Arthritic knee.	51
Fig (20): Feedback and feed forward system	54
Fig (21): Effect of sensory motor training	68
Fig (22): Russian Current with Polyphasic current	72
Fig (23): Burst and carrier frequency concept	73
Fig (24): Phyaction 787	85

Fig (25): 3- pro Isokinetic dynamometer86	6
Fig (26): Dynamometer positioning controls	3
Fig (27): Positioning chair	38
Fig (28): The biodex system control panel89	9
Fig (29): Knee Attachment9	0
Fig (30): Height and weight Scale9	0
Fig (31): Patient position9	13
Fig (32): Alignment of knee axis9)3
Fig (33): Alignment of the knee joint centre9	4
Fig (34): Alignment of transducer cuff9	4
Fig (35): Wobble board9	5
Fig (36): Stretching of hamstring muscle9	19
Fig (37): Stretching of calf muscles10	0
Fig (38): Straight leg raising exercise	0
Fig (39): Isometric strengthening of quadriceps10	1
Fig (40): Placement of electrode Over quadriceps102	2
Fig (41): Accessories of phyaction 787102	2
Fig (42): Standing upright position10	4
Fig (43): Single leg Stance10	5
Fig (44): One – leg balance	6
Fig (45): Forward stepping lunge10	17
Fig (46): Kicks exercise10)8
Fig (47): Walking exercise11	0
Fig (48): Squatting against wall11	11
Fig (49): Squatting away from the wall11	. 1
Fig (50): One – leg squats11	12

Fig (51): Multidirectional rolling movement from sitting113
Fig (52): Multidirectional rolling movement between bar113
Fig (53): Multidirectional rolling movement from standing114
Fig (54): One leg balance on wobble board between bar115
Fig (55): one leg balance on a wobble board115
Fig (56): Mean value of age for all groups118
Fig (57): Mean value of weight for all groups119
Fig (58): Mean value of height for all groups119
Fig (59): Mean value of pain level121
Fig (60): Percentage of pain level in the four groups122
Fig (61): Pre and post mean value of Pain Level124
Fig (62): Mean value of functional disabilities126
Fig (63): Percentage of pain level in the four groups126
Fig (64): Pre and post mean value of functional disabilities.128
Fig (65): Mean value of proprioception acuity
Fig (66): Percentage of pain level in the four groups131
Fig (67): Pre and Post mean value of proprioception acuity.133
Fig (68): Mean value of quadriceps muscle torque135
Fig (69): Percentage of pain level in the four groups136
Fig (70): Pre and Post mean value of quadriceps torque137
Fig (71): Correlation between Pain and functional level138
Fig (72): Correlation between pain level and proprioception.139
Fig (73): Pain level and quadriceps torque Correlation140
Fig (74): Functional level and proprioception Correlation141
Fig (75): Functional level and quadriceps torque Correl142
Fig (76): Proprioception quadriceps torque Correlation143