

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

MOMENT REDISTRIBUTION OF CONTINUOUS PRESTRESSED CONCRETE BEAMS

BY Eslam Mousa Ali Mousa

A Thesis SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING (STRUCTURAL)

SUPERVISED BY

Professor Dr. Amr Ali Abdelrahman

Professor of Concrete Structures, Chair of Structural Engineering Department, Ain Shams University

Professor Dr. Tamer H. K. El-Afandy

Professor of Concrete Structures, Concrete Structures Institute Housing and Building National Research Center

Cairo - 2018

AIN SHAMS UNIVERISTY FACULTY OF ENGINEERING Civil Engineering Department

APPROVAL SHEET

Thesis : Ph.D. in civil Engineering Student name : Eslam Mousa Ali Mousa Thesis Title : Moment Redistribution Examiners Committee:		
Prof. Dr. Raafat El-Hacha Professor of Structural Engineering Department of Civil Engineering University of Calgary, Canda		
Prof. Dr. Ibrahim Mahfouz Emeritus Professor, Structural Engineering Department Faculty of Engineering, Banha University, Egypt		
Prof. Dr. Amr A. Abdelrahman Professor and Chair, Structural Engineering Department Faculty of Engineering, Ain Shams University, Egypt		
Prof. Dr. Tamer H. K. El-Afandy Professor, Concrete Structures Research Institute, Housing and Building National Research Center, Egypt		

Date

/2018

/

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, on 2018 for the degree of doctor of philosophy in Civil Engineering (Structural).

The experimental work included in this thesis was carried out by the researcher at the Housing and Building National Research Canter laboratories, Giza, Egypt.

No part of this thesis has been submitted for a degree or qualification at any other University or Institute.

Date: / / 2018

Signature:

Name: Eslam Mousa Ali Mousa

To

My father,

My mother,

My Wife, MY Daughters (SAMA & SALMA) and My Son (SAAMER)

And My whole family

ACKNOWLEDGMENT

This thesis would not have been completed without the highly appreciated effort of my supervisor Prof. Dr. Amr Abdelrahman to whom I would like to express my deep gratitude for his valuable advice, fruitful guidance, great attention and care and insightful comments.

Also, I would like to thank Prof. Dr. Tamer El-Afandy for his extensive cooperation, enlightened direction and continuous assistance and support throughout this work.

I would like to highly thank my family, friends and colleagues for their great support, infinite inspiration and continuous encouragement.

Special thanks for Prof.Hadad Said (Chair of Concrete Structures Research Institute), Prof. Yeihia Abd Elmagid and Assoc. Prof. Enas Khattab for their support throughout this work.

Special thanks for Eng. Khaled Abdelaal for his support in fabrication of the partially prestressed beams.

Special thanks for Eng. Ahmed Zaki and Eng. Ahmed Hafez for the support in fabrication of fully prestressed beams.

Special thanks to my colleagues Dr. Shady Nabil and Eng. Mohamed El-Sefy for their assistance in this work.

I would like to express my deep gratitude to the staff of the Building Concrete Structures Research Institute at the Housing and Building National Research Center (HBRC) members for their assistance during the experimental program.

A special mention of appreciation is given to my father, my mother my family, my wife, my son and my daughters who managed to encourage and support me through many difficult stages during the preparation of this thesis.

Above all, I thank Allah for giving me the strength and power to conclude this work.

F CONTROL OF THE CONT

AIN SHAMS UNIVERISTY

FACULTY OF ENGINEERING

Civil Engineering Department

Abstract of the PhD Thesis Submitted by

Eng. / Eslam Mousa Ali Mousa

Title of the Thesis:

Moment Redistribution of Continuous Prestressed Concrete Beams

Supervisors:

Prof. Dr. Amr A. Abdelrahman

Prof. Dr. Tamer H. K. El-Afandy

ABSTRACT

In the current practices of structural design, the concept of moment

redistribution in conjunction with linear analysis is well known and widely

accepted. There are numerous studies and various references that deal with this

issue and different codes propose various provisions for the amount of permissible

redistribution.

To date, there is a debate on the extent of redistribution permitted by different

codes of practice. The extent of moment redistribution in continuous prestressed

concrete beams depends on number of factors including the amount of tension

strain, compression reinforcement, cable profile as well as concrete strength.

In prestressed concrete members, there is a major difference between simple

and continuous construction that is the effect of the secondary moment. At

ultimate limit state of design, the consideration of secondary moments is

important in the design analysis for statically indeterminate continuous

prestressed concrete members. Codes give different recommendations for the

consideration of secondary moments at ultimate limit state.

This thesis presents an experimental and analytical programs conducted to

investigate the Behaviour of two-span continuous fully and partially prestressed

b

concrete (PC) beams. The program consists of a total of eight continuous beams with overall dimensions equal to 150 x 300 x 8000-mm and clear spans equal to 3850-mm. The beams were tested using five-point loads up to failure to examine its Behaviour. Different cable profiles and concrete strength were used for fully and partially prestressed concrete specimens to predict the actual moment redistribution for each parameter. A comparison between the experimental results and the available international codes are presented.

An analytical study was carried out using strain compatibility approach to predict the actual Behaviour of the PC beams with different cable profile and different concrete strength. The analytical results showed good agreement with the experimental results. Finally, recommendations based on the conclusions of this study are given for better understanding of the behaviour of statically indeterminate continuous prestressed concrete beams.

Keywords: Continuous Beams, Ductility, Fully Prestressing, Moment Redistribution, Prestressed Concrete, Partially Prestressing, Secondary Moment, Stiffness.

TABLE OF CONTENTS

			Page No
Chapter	1	INTRODUCTION	1
1.1		GENERAL	1
1.2		MOMENT REDISTRIBUTION	1
1.3		SECONDARY MOMENT	2
1.4		RESEARCH OBJECTIVES	3
1.5		THESIS OUTLINE	3
Chapter	2	LITERATURE REVIEW	6
2.1		INTRODUCTION	6
2.2		BACK GROUND ON PRESTRESSED	
2.2		CONCRETE	6
2.3		DUCTILITY OF PRESTRESSED CONCRETE	
		SECTIONS	7
2.4		MOMENT REDISTRIBUTION OF PC	
2.4		MEMBERS	9
2.4.1		Concept Of Moment Redistribution	10
2.4.2		Previous Research On Moment	
		Redistribution	12
2.4.3		Limit of Moment Redistribution In Various	
		Codes	18
2.	.4.3.1	The Egyptian Code of Practice 203-2017 (ECP 203)	18
2.	.4.3.2	The ACI 318-14	19
2.	.4.3.3	The Canadian Code CSA A23.3-04	20
2.	.4.3.4	The British Code BS8110-97	20
2.	.4.3.5	The Australian Standard AS3600-2001	21
2.	.4.3.6	The Indian Standards Code IS456-2000	21
2.5		SECONDARY MOMENT IN THE	
		INDETERMINATE PRESTRESSED MEMBERS.	22
2.5.1		Secondary Moment Research Background	23
2.5.2		ACI Code Provisions On Secondary	
		Moment	25
Chapter	3	EXPERIMENTAL PROGRAM	26
3.1		INTRODUCTION	26
3.2		TEST SPECIMENS	26
3.3		FORMWORK	33
3.4		MATERIAL PROPERTIES	34
3.4.1		Concrete	34
3.4.2		Grout	36
3.4.3		Non Prestressed Steel Reinforcement	38
3.4.4		Prestressing Steel	39
	.4.4.1	Prestressing Steel Accessories	40
3.5		CASTING OF THE SPECIMENS	42

		Page No
3.6	PRESTRESSING PROCESS	46
3.6.1	Prestressing Steps	48
3.7	TEST SETUP AND INSTRUMENTATIONS	49
3.8	LOADING SCHEME	56
Chapter 4	EXPERIMENTAL RESULTS	57
4.1	INTRODUCTION	57
4.2	TEST OBSERVATIONS	58
4.3	EXPERIMENTAL RESULTS	58
4.3.1	Behaviour of Specimen (B01A)	63
4.3.2	Behaviour of Specimen (B02A)	71
4.3.3	Behaviour of Specimen (B03A)	80
4.3.4	Behaviour of Specimen (B04A)	88
4.3.5	Behaviour of Specimen (B01B)	97
4.3.6	Behaviour of Specimen (B02B)	105
4.3.7	Behaviour of Specimen (B03B)	114
4.3.8	Behaviour of Specimen (B04B)	123
Chapter 5	DISCCUSION OF THE EXPERIMENTAL	
•	RESULTS	133
5.1	GENERAL	133
5.2	CONCRETE STRENGTH AND CABLE PROFILE	
	EFFECT ON FULLY PRESTRESSED	
	BEAMS	134
5.2.1	Cracking Load	134
5.2.2	Maximum Load	135
5.2.3	Mode of Failure	136
5.2.4	Beam Stiffness	136
5.3	CONCRETE STRENGTH AND CABLE PROFILE	
	EFFECT ON THE PARTIALLY PRESTRESSED	
	BEAMS (B01B, B02B, B03B AND	
	B04B)	139
5.3.1	Cracking Load	139
5.3.2	Maximum Load	140
5.3.3	Mode of Failure	141
5.3.4	Beam Stiffness	141
5.4	FULLY AND PARTIALLY PRESTRESSED	
	SPECIMENS	144
5.4.1	Maximum and Cracking Load	144
5.4.2	Crack Pattern	145
5.4.3	Beam Stiffness	147
5.5	SECONDARY MOMENT EFFECT	154
5.5.1	At Service Load	154
5.5.2	At Section Capacity	155

			Page No
5.6		MOMENT REDISTRIBUTION	160
5.7		RELATION BETWEEN THE SECONDARY	
		MOMENT AND MOMENT	
		REDISTRIBUTION	164
5.8		DUCTILITY OF THE TESTED BEAMS	165
Chap	ter 6	ANALYTICAL STUDY AND CODES	
•		COMPARISON	168
6.1		GENERAL	168
<i>-</i> 2		ANALYSIS USING STRAIN COMPATIBILITY	
6.2		APPROACH	170
6.2.1		Failure Criteria	171
6.2.2		Material Modelling	171
	6.2.2.1	Concrete	171
	6.2.2.2	Non-Prestressed Steel Reinforcement	173
	6.2.2.3	Prestressed Steel Reinforcement	173
6.3		COMPARISON BETWEEN PREDICTED AND	
		EXPERIMENTAL	
		RESULTS	173
6.4		MOMENT REDISTRIBUTION PREDICTED BY	
		VARIOUS DESIGN CODES	176
Chap	ter 7	CONCLUSIONS	183
7.1		SUMMARY	183
7.2		CONCLUSIONS	184
7.3		RECOMMENDATIONS FOR FUTURE	
		STUDIES	185
		REFERENCES	186

LIST OF TABLES

Table		Page No.
Number		
3.1	Summary of the beams' details	28
3.2	Mixes proportions by weight	35
3.3	Concrete compressive and tensile strength	36
3.4	Properties of Non prestressed reinforcement	38
3.5	Prestressing force at each step for the tested beams	48
3.6	Camber due to prestressing force for the tested beams	49
4.1	Experimental test results of the failed span for the	
	tested beams	59
4.2	Concrete and non-prestressed steel reinforcement	
	strains results for the tested beams	62
5.1	Calculated and measured capacities and secondary	
	moments at the intermediate support section	155
5.2	Calculated and measured capacities and secondary	
	moments at the mid-span section	157
5.3	Moment redistribution for group (A)	161
5.4	Amount of moment redistribution for group (B)	162
5.5	Ductility index for the fully and partially PC beams	167
6.1a	Calculated moment based on the theoretical	
	analysis using strain compatibility approach versus	
	experimental results for all tested specimens	175
6.1b	Calculated and measured carrying load	176
6.2	Moment redistribution based on measured	
	experimental moment and calculated elastic	
	moment at the intermediate support section	178
6.3	Moment redistribution values based on measured	
	experimental moment and calculated elastic	
	moment for the mid-span section	180

LIST OF FIGURES

Figure		Page No
Number		
2.1	Moment redistribution in continuous beam	11
2.2	Elevation of the studied prestressed beams Elevation and cross-sections of prestressed	13
2.3	specimen	15
2.4	Details of the examined beams	17
2.5	Moment Redistribution Diagram According to ECP 203-2017	19
2.6	Permissible redistribution of moment for minimum Rotation Capacity according to ACI318-14	20
2.7	Secondary Moment Effect	23
3.1a,b and c	Cable Profile and reinforcement details of all tested specimens	29
3.1d	Details of test specimens	30
3.2a,b and c	Cable Profile and reinforcement details of all tested specimens	31
3.2d	Details of test specimens	32
3.3	Bearing End Plate thickness 15mm	33
3.4	Formwork Elevation	33
3.5	Formwork side view	34
3.6	Concrete cubes testing	36
3.7	Concrete prisms testing	36
3.8a	Grouting process	37
3.8b	Grout prisms	37
3.8c	Tensile strength test of grout prisms	37
3.8d	Compressive strength test of grout prism	38
3.9	Mechanical tension test on 10 mm bar diameter	39
3.10	Seven Wire Strand	39
3.11a	Anchor Device	40
3.11b	Steel Wedge	40
3.12	Duct Shape	41
3.13	Vent Pipe	41
3.14	Non-prestressed and prestressed reinforcement	43
3.15	U-shape reinforcement bars	43
3.16	End bearing plat	44
3.17	Casting of concrete at temperature degree less than 35° C	44
3.18	Concrete casting process using electrical vibrator	45
3.19	Concrete curing using wet burlap	45

Figure Number		Page No
3.20	Stressing stage	46
3.21	Stressing steps	46
3.22	Joint During prestressing	47
3.23	Donut load cell	47
3.24	The prestressing force per each step	48
3.25	Camber at each prestressing step for tested specimens	49
3.26a	Schematic diagram of the test setup and	.,
5. 2 0u	instrumentation	51
3.26b	Detailed diagram of the test setup and	<i>3</i> 1
3.200	instrumentation	51
3.27	Test Setup and Instrumentations	51
3.28a	PI-Gauges at joint B	52
3.28b	Shows the PI-Gauges at mid span of span AB	52
3.28c	PI-Gauges at mid span of span CB	53
3.29	Strain gauges locations of the non-prestressed steel	33
3.27	reinforcement	54
3.30a	Crack width measurements	55
3.30b	Magnifying glass	55 55
3.31	Data Logger System	55 55
3.32	Cyclic loading scheme	56
4.1a	The cracking (P_{cr}) , elastic peak (Pe) and maximum	30
4.1a	(P _{max}) loads	60
4.1b		00
4.10	Measured deflection (Δ_u) at 80% from the maximum	60
4.0	loads and the deflection at the elastic peak (Δ_e)	60
4.2	The failure mode of specimen B01A and the failed	<i></i>
4.2	span	65
4.3	Plastic hinge formation at the intermediate support	
4.4	section (Joint B)	66
4.4	The failed span (AB) cracks pattern	66
4.5	Cracks pattern of specimen B01A	67
4.6	Load Vertical Deflection relationship of the failed	
4.5	span (AB) for specimen B01A	68
4.7	The measured deflection at cracking, elastic peak,	
	maximum and failure loads in addition to the upward	
	camber from the prestressing along beams span	68
4.8	Load concrete compressive strain for specimen B01A	69
4.9	The applied load and the measured experimental and	
	calculated elastic reaction relation for specimen	
	B01A (P- R _{B-exp}) and (P- R _{B-calc})	69
4.10	The experimental Moment and Section Moment	
	Capacity of specimen B01A	70

Figure Number		Page No
4.11	The experimental and calculated secondary moment	
	of the filed span for specimen B01A	70
4.12	The initial crack location before testing	73
4.13	Failure mode of specimen B02A	74
4.14	The plastic hinge at the intermediate support (Joint B)	
	of specimen B02A	74
4.15	The failed span AB and the crack pattern of specimen	
	B02A	75
4.16	Cracks pattern of specimen B02A	76
4.17	Load Vertical Deflection relationship of the failed	
	span (AB) for specimen B02A	77
4.18	The measured deflection at cracking, elastic peak,	
	maximum and failure loads in addition to the upward	
	camber from the prestressing along beams span	77
4.19	Load concrete compressive strain for specimen B02A	78
4.20	The applied load and elastic reaction relation of	
	specimen B02A (P- R _{e-B})	78
4.21	Experimental moment and section moment capacity	
	of specimen B02A	79
4.22	The experimental and calculated secondary moment	
	Diagram of the filed span for specimen B02A	79
4.23	Failure mode of specimen B03A	82
4.24	The plastic hinge at the intermediate support (Joint B)	
	of specimen B03A	83
4.25	The failed span AB and the crack pattern of specimen	
	B03A	83
4.26	Cracks pattern of specimen B03A	84
4.27	Load Vertical Deflection relationship of the failed	
	span (AB) for specimen B03A	85
4.28	The measured deflection at cracking, elastic peak,	
	maximum and failure loads in addition to the upward	
	camber from the prestressing along beams span	85
4.29	Load concrete compressive strain for specimen B03A	86
4.30	The applied load and elastic reaction relation of	
	specimen B02A (P- R _{e-B})	86
4.31	The actual concrete cover of the mid-span (CB)	
	section	87
4.32	The experimental moment and section moment	
	capacity diagram of specimen B03A	87
4.33	The experimental and calculated secondary moment	
	Diagram of the filed span for specimen B03A	88

Figure Number		Page No
4.34	Failure mode of specimen B04A	91
4.35	The plastic hinge at the intermediate support (Joint B) of specimen B04A	91
4.36	The failed span AB and the crack pattern of specimen	
	B04A	92
4.37	Cracks pattern of specimen B04A	93
4.38	Load Vertical Deflection relationship of the failed	
	span (AB) for specimen B04A	94
4.39	The measured deflection at cracking, elastic peak, maximum and failure loads in addition to the upward	
	camper from the prestressing along beams span	94
4.40	Load concrete compressive strain for specimen B04A	95
4.41	The applied load and elastic reaction relation of	
	specimen B04A (Pm- R _{e-B})	95
4.42	Experimental moment and section moment capacity	0.5
4.40	of specimen B04A	96
4.43	Secondary moment Diagram of the filed span for	0.6
4 4 4	specimen B04A	96
4.44	Failure mode of specimen B01B	99
4.45	The plastic hinge at the intermediate support (Joint B)	100
4.46	of specimen B01B The failed span AB and the crack pattern of specimen	100
4.40	B01B	100
4.47	Cracks pattern of specimen B01B	101
4.48	Load Vertical Deflection relationship of the failed	101
1.10	span (AB) for specimen B01B	102
4.49	The measured deflection at cracking, elastic peak, maximum and failure loads in addition to the upward	102
	camber from the prestressing along beams span	102
4.50	Load concrete compressive strain for specimen B01B	103
4.51	The applied load and elastic reaction relation of	
	specimen B01B (P- R _{e-B})	103
4.52	Experimental moment and section moment capacity	
4.70	of specimen B01B	104
4.53	Secondary moment diagram of the filed span for	104
4.5.4	specimen B01B	104
4.54	Load versus Intermediate support and mid-span steel	105
1 55	strains for specimen B04A	105
4.55 4.56	Failure mode of specimen B02B	108
4.50	The plastic hinge at the intermediate support (Joint B) of specimen B02B	108
	VI DOVUITION DUAD	1 (7()