Serum Antimullerian Hormone and Ovarian Follicular Blood Flow as Predictors of Low Response in Intracytoplasmic Sperm Injection

Thesis

Submitted for partial fulfilment of the MD degree in Obstetrics & Gynaecology

By **Zeiad Ahmed El-Gizawy**

MSc Obstetrics & Gynaecology, Ain Shams University, 2004 Assistant Lecturer of Obstetrics & Gynaecology Faculty of Medicine, Ain Shams University

Under the Supervision of

Prof. Essam El-Din Mohamed Ammar

Professor of Obstetrics & Gynaecology Faculty of Medicine, Ain Shams University

Prof. Mohamed Ashraf Mohamed Farouk Kortam

Professor of Obstetrics & Gynaecology Faculty of Medicine, Ain Shams University

Prof. Mona Fathy Youssef

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Prof. Hesham Mahmoud Harb

Professor of Obstetrics & Gynaecology Faculty of Medicine, Ain Shams University

Ain Shams University 2009

Acknowledgements

I would like to express my thanks to **Prof. Essam El-Din**Mohammed Ammar, professor of obstetrics & gynaecology, for his
support and guidance during the course of this work.

I would also like to express my deep gratitude to **Prof.**Mohamed Ashraf Mohamed Farouk Kortam, professor of obstetrics & gynaecology, for his immense effort in the scientific and written work of this thesis, and whose patience and perseverance was the cornerstone in producing this work.

I would also like to thank **Prof. Mona Fathy Youssef**, professor of clinical pathology, for her extremely valuable work in the laboratory aspect of the thesis, without which this work would never have been accomplished.

Deep thanks are also due to **Prof. Hesham Mahmoud Harb**, professor of obstetrics and gynaecology, for his support during the work.

And last, but certainly not least, I would like to express my deep thanks to the staff of the **Unit of Assisted Reproduction**, Ain Shams University Maternity Hospital, for their help in the practical aspect of this study.

Table of Contents

Subject	Page
Acknowledgements	i
Table of Contents	ii
List of Tables	iii
List of Figures	V
List of Abbreviations	vii
Abstract	ix
Introduction	1
Aim of the Work	5
Review of Literature	
Chapter 1: Ovarian Development and Folliculogenesis	6
Chapter 2: Assisted Reproduction	47
Chapter 3: Anti-Mullerian Hormone	132
Subjects and Methods	162
Results	174
Discussion	240
Summary	264
Conclusion	269
Recommendations	270
References	271
Arabic Summary	

List of Tables

Tables in the Review of Literature

	Table	Page
1	2004 SART/ASRM Guidelines for the Number of Embryos	
	Transferred	122

Tables in the Results

	Table	Page
1	Percentage of good and poor responders	174
2	Difference in means of age in good and poor response groups	176
3	Difference in means of FSH, LH and oestradiol in good and	
	poor response groups	178
4	Difference in mean ovarian volume and antral follicle count	
	between good and poor response groups	180
5	Difference in mean resistance index between good and poor	
	response groups	182
6	Difference between Antimullerian hormone mean values in	
	good and poor response groups	184
7	Correlation between serum level of Day 3 AMH and age	186
8	Correlation between day-3 serum AMH level and basal serum	
	FSH level	188
9	Correlation between day-3 serum AMH level and basal serum	
	LH level	190
10	Correlation between day-3 serum AMH level and basal serum	
	oestradiol level	192
11	- · · · · · · · · · · · · · · · · · · ·	
	follicle count	194
12	Correlation between day-3 serum AMH level and mean	
	ovarian volume	196
13	Correlation between day-3 serum AMH level and Doppler	
	resistance index	198
14	Correlation between day-3 serum AMH level and both	
	number of retrieved oocytes and grade 1 embryos	200

15	Correlation between Doppler resistance index and age	202
16	Correlation between Doppler resistance index and basal serum	
	FSH and LH levels	204
17	Correlation between Doppler resistance index and basal serum	
	oestradiol level	206
18	Correlation between Doppler resistance index and both antral	
	follicle count and mean ovarian volume	208
19	Correlation between Doppler resistance index and both	
	number of retrieved oocytes and grade 1 embryos	210
20	Correlation between age and basal serum FSH and LH levels	212
21	Correlation between age and basal serum oestradiol level	214
22	Correlation between age and both antral follicle count and	
	mean ovarian volume	216
23	Correlation between age and both number of retrieved oocytes	
	and grade 1 embryos	218
24	Correlation between basal serum FSH level and both antral	
	follicle count and mean ovarian volume	220
25	Correlation between basal serum FSH level and both number	
	of retrieved oocytes and grade 1 embryos	222
26	Correlation between basal serum LH level and both antral	
	follicle count and mean ovarian volume	224
27	Correlation between basal serum FSH level and both number	
	of retrieved oocytes and grade 1 embryos	226
28	Correlation between basal serum oestradiol level and both	
	antral follicle count and mean ovarian volume	228
29	Correlation between basal serum oestradiol level and both	
	number of retrieved oocytes and grade 1 embryos	230
30	Correlation between antral follicle count and mean ovarian	
	volume	232
31	Correlation between antral follicle count and both number of	
	retrieved oocytes and grade 1 embryos	234
32	Correlation between mean ovarian volume and both number	
	of retrieved oocytes and grade 1 embryos	236
33	Receiver Operating Characteristic (ROC) curves for	
	determination of sensitivity and specificity of different	
	predictors	238

List of Figures

Figures in the Review of Literature

Figures	Page	
1. AMH Structure	138	

Figures in the Results

	Figures	Page
1	Percentage of good and poor responders	175
2	Difference in means of age in good and poor response groups	177
3	Difference in means of FSH, LH and oestradiol in good and	
	poor response groups	179
4	Difference in mean ovarian volume and antral follicle count	
	between good and poor response groups	181
5	Difference in mean resistance index between good and poor	
	response groups	183
6	Difference between Antimullerian hormone mean values in	
	good and poor response groups	185
7	Correlation between serum level of Day 3 AMH and age	187
8	Correlation between day-3 serum AMH level and basal serum	
	FSH level	189
9	Correlation between day-3 serum AMH level and basal serum	
	LH level	191
10	Correlation between day-3 serum AMH level and basal serum	
	oestradiol level	193
11	Correlation between day-3 serum AMH level and antral	
	follicle count	195
12	Correlation between day-3 serum AMH level and mean	
	ovarian volume	197
13	Correlation between day-3 serum AMH level and Doppler	
	resistance index	199
14	Correlation between day-3 serum AMH level and both	
	number of retrieved oocytes and grade 1 embryos	201
15	Correlation between Doppler resistance index and age	203

16	Correlation between Doppler resistance index and basal serum	
	FSH and LH levels	205
17	Correlation between Doppler resistance index and basal serum	
	oestradiol level	207
18	Correlation between Doppler resistance index and both antral	
	follicle count and mean ovarian volume	209
19	Correlation between Doppler resistance index and both	
	number of retrieved oocytes and grade 1 embryos	211
20	Correlation between age and basal serum FSH and LH levels	213
21	Correlation between age and basal serum oestradiol level	215
22	Correlation between age and both antral follicle count and	
	mean ovarian volume	217
23	Correlation between age and both number of retrieved oocytes	
	and grade 1 embryos	219
24	Correlation between basal serum FSH level and both antral	
	follicle count and mean ovarian volume	221
25	Correlation between basal serum FSH level and both number	
	of retrieved oocytes and grade 1 embryos	223
26	Correlation between basal serum LH level and both antral	
	follicle count and mean ovarian volume	225
27	Correlation between basal serum FSH level and both number	
	of retrieved oocytes and grade 1 embryos	227
28	Correlation between basal serum oestradiol level and both	
	antral follicle count and mean ovarian volume	229
29	Correlation between basal serum oestradiol level and both	
	number of retrieved oocytes and grade 1 embryos	231
30	Correlation between antral follicle count and mean ovarian	
	volume	233
31	Correlation between antral follicle count and both number of	
	retrieved oocytes and grade 1 embryos	235
32	Correlation between mean ovarian volume and both number	
	of retrieved oocytes and grade 1 embryos	237
33	Receiver Operating Characteristic (ROC) curves for	
	determination of sensitivity and specificity of different	
	predictors	239

List of Abbreviations

Abbreviation	Term
ALK	Activin receptor-like kinase
AMH	Anti-Mullerian hormone
AMHKO	Anti-Mullerian hormone knockout
AMHR	Anti-Mullerian hormone receptor
ART	Assisted reproductive technology
ASRM	American Society for Reproductive Medicine
BBT	Basal body temperature
bFGF	Basic fibroblast growth factor
BMP	Bone morphogenetic protein
bp	Base pairs
cAMP	Cyclic adenosine monophosphate
CHO	Chinese hamster ovary
CI	Confidence interval
COX	Cyclooxygenase
Cx	Connexin
Dax-1	Dosage-sensitive sex reversal critical region on the X
	chromosome gene-1
DNA	Deoxyribonucleic acid
E_2	Oestradiol
EGF	Endothelial growth factor
ELISA	Enzyme-linked immunosorbent assay
FSH	Follicle stimulating hormone
GDF	Growth differentiation factor
GDP	Guanosine diphosphate
GIFT	Gamete intrafallopian transfer
GTP	Guanosine triphosphate
GnRH	Gonadotrophin releasing hormone
hCG	Human chorionic gonadotrophin
HDL	High density lipoprotein
hMG	Human menopausal gonadotrophins

HRP Horseradish peroxidase

HSD Hydroxysteroid dehydrogenase

HSG Hysterosalpingography

ICSI Intracytoplasmic sperm injection

IGF Insulin-like growth factor IUI Intrauterine insemination

IVF In vitro fertilization

kDa Kilo Daltons

LDL Low density lipoprotein LH Luteinizing hormone

MESA Microsurgical epididymal sperm aspiration

MIS Mullerian inhibitory substance

Nor Nuclear corepressor NGF Nerve growth factor

OR Odds ratio

PCOD Polycystic ovarian disease

PGD Pre-implantation genetic diagnosis

PKC Protein kinase C

PMDS Persistent Mullerian duct syndrome

PR Progesterone receptor
PTK Protein tyrosine kinase
PVP Polyvinylpyrrolidone
RNA Ribonucleic acid

ROC Receiver operating characteristic

rpm Rounds per minute SCF Stem cell factor

SART Society for Assisted Reproductive Technology

SF Steroidogenic factor

SRY Sex determining region of the Y chromosome

StAR Steroid acute regulatory protein

T Testosterone

TESE Testicular sperm extraction
TGFβ Transforming growth factor beta

TIC Theca interstitial cells
TMB Tetramethylbenzidine
WHO World Health Organisation
WT1 Wilm's tumour suppressor

ZIFT	Zygote intrafallopian transfer
ZP	Zona pellucida protein

Abstract

Studies on the use of Antimullerian hormone (AMH) as a marker for ovarian ageing in women have recently started. As AMH is largely expressed throughout folliculogenesis, from the primary follicular stage towards the antral stage, serum levels of AMH may represent both the quantity and quality of the ovarian follicle pool. The development of vaginal colour and pulse Doppler ultrasound has resulted in the recent tendency to evaluate the quality and the developmental competence of the oocyte using the ovarian vascular change in women undergoing IVF. It has been reported that perifollicular blood flow characteristics could be a marker for evaluating the quality of oocytes and the developmental competence of the corresponding embryos. A study was conducted in the Assisted Reproduction Unit, Ain Shams Maternity Hospital. It included 50 infertile women undergoing intracytoplasmic sperm injection (ICSI) for treatment of infertility. All women were subjected to pituitary downregulation using either the short or long protocols applied by the unit. On day 3 of the induction cycle, serum AMH was measured and a transvaginal ultrasound scan was performed to determine the number of antral follicles and the mean ovarian volume. On the day of HCG administration, serum AMH was measured again and perifollicular blood flow was assessed using colour Doppler transvaginal ultrasound. Results showed that the number of good responders was 37 (74%) and poor responders were 13 (26%). Both day-3 and end-of-cycle AMH levels were significantly higher (p<0.01) in the good response group. However, the difference between day-3 AMH and end-of-cycle AMH was non-significant (p>0.05). There was a highly significant (p<0.01) difference between the two groups as regards Doppler resistance index, being higher in the poor response group. There was also a highly significant positive correlation (p>0.05) between serum AMH and both the number of retrieved oocytes and the number of grade 1 embryos. There was a highly significant negative correlation between Doppler resistance index and both the number of retrieved oocytes and the number of grade 1 embryos. There was a highly significant positive correlation (p<0.01) between serum AMH and both antral follicle count and mean ovarian volume. The negative correlations between Doppler resistance index and both antral follicle count and mean ovarian volume proved to be statistically significant (p<0.05) and highly significant (p<0.01), respectfully. The negative correlation between serum AMH and Doppler resistance index was highly significant (p<0.01). Serum AMH showed the highest sensitivity (97.3%) and specificity (92.3%) as a test for prediction of ovarian response. On the other hand, the Doppler resistance index, despite showing high sensitivity (97.3%), showed a very low specificity (7%).

Introduction

The concept of ovarian reserve is loosely defined as the size and quality of the remaining ovarian follicular pool. The number of oocytes in any given woman is genetically determined and inexorably declines throughout life, from approximately 1-2 million at birth to about 300,000 at puberty, 25,000 at age 37-38 (when the pace of follicular depletion accelerates), and fewer than 1000 at menopause (Faddy et al, 1992 and Gougeon et al, 1994).

Poor response in IVF cycles is a cause of cycle cancellation and to repeated attempts for a better response in subsequent cycles (Vladimirov et al., 2005). Treatment cancellation because of poor ovarian response is a significant problem. The prevalence of poor response is estimated to be 9-24% of the ART population (Tarlatzis et al., 2003).

A poor ovarian response is a reflection of reduced total ovarian follicular capacity (reserve). Identification of women with a markedly reduced ovarian reserve, likely to lead to cycle cancellation, is paramount prior to embarking on expensive and invasive treatment such as IVF (**Akande** *et al.*, **2004**). Ovarian reserve tests help to predict the response to exogenous gonadotrophin

stimulation and the likelihood of success with IVF and are widely accepted as an essential element of the evaluation of IVF candidates. Considering the associated costs, logistics, and risks, accurate prognostic information is very helpful to couples who may be considering IVF. Ovarian reserve tests are generally reliable, but not infallible. A number of methods for measuring ovarian reserve have been described (**Speroff and Fritz, 2005**).

Laboratory tests of ovarian reserve include basal serum FSH and oestradiol levels, in addition to inhibin-B levels (**Vladimirov** *et al.*, 2005 and McIlveen *et al.*, 2007).

Studies on the use of Antimullerian hormone (AMH) as a marker for ovarian ageing in women have recently started. As AMH is largely expressed throughout folliculogenesis, from the primary follicular stage towards the antral stage, serum levels of AMH may represent both the quantity and quality of the ovarian follicle pool (La Marca and Volpe, 2006). Studying young normo-ovulatory women showed that serum concentrations of AMH change over time and with advancing age before changes occur in other currently known ageing-related variables, such as serum concentrations of FSH, inhibin B and oestradiol (de Vet et al., 2002, van Rooij et al., 2002, Hazout et al., 2004, Muttukrishna et al., 2004, Tremellen et

al., 2005, van Rooij et al., 2005, Visser et al., 2006 and Nakhuda et al., 2007).

Furthermore, the relationship between serum concentrations of AMH and the number of antral follicles (van Rooij et al., 2002, Muttukrishna et al., 2005, Lekamge et al., 2007 and McIlveen et al., 2007) and mean ovarian volume (McIlveen et al., 2007) has been studied in women undergoing IVF treatment.

Ultrasound is also a helpful tool in the prediction of poor response. The measurement of ovarian volume (Fratarelli et al., 2004, Hendriks et al., 2007 and Kwee et al., 2007) and antral follicle count (Klinkert et al., 2005, Hendriks et al., 2007, Kwee et al., 2007 and Soldevila et al., 2007) have been studied as predictors of ovarian reserve.

The development of vaginal colour and pulse Doppler ultrasound has resulted in the recent tendency to evaluate the quality and the developmental competence of the oocyte using the ovarian vascular change in women undergoing IVF (Engmann et al., 1999). The practical value of these studies is still unproven. Increase in ovarian blood flow is related to angiogenesis, which starts early in the menstrual cycle when the dominant follicle or the dominant ovary has been selected. The gradual increase in ovarian blood flow is related to increasing oestrogen levels, and the dramatic increase that

is noted to be preovulatory is most likely to be related to a sudden increase in intrafollicularRIY progesterone levels (Goswamy, 2005).

It has been reported that perifollicular blood flow characteristics could be a marker for evaluating the quality of oocytes and the developmental competence of the corresponding embryos (Coulam *et al.*, 1999, Battaglia *et al.*, 2000 and Kim *et al.*, 2004).