

Ecological, Biological and Physiological studies on some fish species from Suez Canal and nearby areas

A THESIS Submitted for the Award of the Ph. D. in Zoology

BY

Amal Omar Baleg

M. Sc. In Biology Zawia University, Libya (2008)

Under the Supervision of

Prof. Abd El-Halim A. Saad

Professor of Aquatic Ecology Zoology Department, Faculty of Science Ain Shams University

Prof. Khalid M. El-Moselhy

Prof. of Marine Pollution, National Institute of Oceanography & Fisheries

Prof. Waheed M. Emam

Professor of Aquatic Ecology Zoology Department, Faculty of Science Ain Shams University

Dr. EmadHamdy Abu El-Naga

Associate. Prof. of Biochemistry, National Institute of Oceanography & Fisheries

Zoology Department Faculty of Science Ain Shams University 2016

Supervisors:

Prof. Abd El-Halim A. Saad

Professor of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University.

Prof. Waheed M. Emam

Professor of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University.

Prof. Khalid M. El-Moselhy

Prof. of Marine Pollution, National Institute of Oceanography & Fisheries.

Dr. Emad H. Abu El-Naga

Associate Prof. of Biochemistry, National Institute of Oceanography & Fisheries.

الله الرحمن الركام

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم سورة البقرة32

<u>ACKNOWLDEGEMENT</u>

I wish first to thank ALLAH the most merciful for the power and patience his almighty gave me to accomplish this thesis.

I wish to express my deep gratitude and sincere thanks to, **Prof. Dr. Abd El-Halim A. Saad**, Prof. of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University, who provided invaluable insight and guidance through supervision of this study. I am also grateful to **Prof. Dr. Waheed M. Imam**, Prof. of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University for supervising and reading of the manuscript.

I'm especially indebted to **Prof. Dr. Khalid M. El-Moselhy**, Prof. of Marine Pollution, National Institute of Oceanography and Fisheries for supervising and providing all kinds of help for this study. I'm thankful to **Dr. Emad H. Abu El-Naga**, Associate Prof. of Biochemistry, National Institute of Oceanography and Fisheries, for helping and facilities he offered continues supervision during the laboratory work and for his assistance in the statistical analysis, graphs and curve of work.

Special words to thanks and gratefulness to **Dr.Lamíaa I.Mohamedeín,** lecturer of Marine Pollution, National Institute of Oceanography and Fisheries, for her effort in samples collection and metals analysis.

My greeting is due to my kind family and tomy Husband for his very kind help and support during preparation of this thesis.

ABSTRACT

Suez Canal considered as the vital link between Red and Mediterranean seas with different environment. The canal was divided into three sectors (Port Said, Ismailia and Suez) including 12 sits, collected during period of collection (spring, 2013- winter, 2014). This study was concerned to physicochemical parameters, heavy metals, toxicity of lead and copper with physiological effects in addition to biological characters of a selected fish species.

Water temperature in the study area recorded its highest and lowest values in summer and winter. Highest seasonal salinity was recorded in winter. Autumn attained the highest dissolved oxygen and biochemical oxygen demand. Nutrient salts (ammonia, nitrite and nitrate) recorded their highest seasonal values during summer, while phosphate highest level was recorded in spring.

Heavy metals (lead, cadmium, copper, zinc and iron) were investigated in water, sediments and fish organs (muscles, liver and gills). Cadmium recorded the lowest values of all studied metals in water, sediments and fish organs, while iron was the highest one.

96-h LC₅₀ values of lead and copper in fish *Liza carinata* were 2.818 and 0.447 mg/l, respectively. At exposure of fish to 20% 96-h LC₅₀ of Pb and Cu, transaminases and alkaline phosphatase were increased in their activity at first 24 h then decline under control level with increasing the time of exposure. Protein level fluctuated around the control level in muscles and liver in addition to the total lipid in muscles.

Fish *Liza carinata* had mean total length and weight of 14.80 ± 2.20 cm and 37.53 ± 16.38 gm, respectively and with sex ratio (males: females) of 1.00:1.64. The highest gonado-somatic index of female was recorded in autumn and winter for males. The higher frequencies percent of females and males were observed at length intervals of 15.0-15.9 and 14.0-14.9 cm, respectively. The length weight relationship was followed the equation $W=aL^b$.

<u>Key words</u>: Suez Canal, 6hysic-chemical parameters, heavy metals, water, sediments, fish organs, toxicity, enzymes, lipids, protein, biological aspects.

CONTENTS

	Pages
List of figures	I
List of tables	V
Introduction	1
Aim of the study	5
Literature review	6
1. Physical and chemical parameters	
2. Heavy metals	9
3. Toxicity and biochemical effects	20
4. Biological studies of fish <i>Liza carinata</i>	25
Materials and methods	28
1. Study area	28
2. Samples collection and storage	31
2.1 Water	31
2.2- Sediments	31
2.3- Fish	31
3. Parameters under investigation	32
4. Procedures	32
4.1. Physical parameters	32
4.2. Chemical parameters	32
4.3. Nutrients salts	34
4.4. Heavy metals	35
5. Toxicity and biochemical parameters	37
5.1.Toxicity	37
5.2. Biochemical parameters	38
6. Biological aspects of Liza carinata	40
7. Data analysis	41
Results	42
1. Physico-chemical parameters	42
2. Nutrient salts	53
3. Heavy metals	63
3.1. Heavy metals in water	63

3.2. Heavy metals in sediments	76
3.3 Heavy metals in fish	79
Correlation matrix between different parameters in	
Suez Canal water	88
Analysis of variance	89
4. Toxicity of lead and copper on <i>Liza carinata</i>	90
5. Biochemical effects of lead and copper on <i>Liza carinata</i>	92
6. Biological aspects of fish <i>Liza carinata</i>	98
Discussion	103
Physico-chemical parameters	103
Nutrient salts	108
Heavy metals	111
Toxicity of lead (Pb) and Copper (Cu) in Liza carinata	119
Biochemical indices of lead and copper on Liza carinata	122
Activity of liver enzymes, aspartate (AST) and alanine	
transaminases (ALT) and alkaline phosphatase (ALP)	122
Total protein and total lipids	123
Biological aspects of fish <i>Liza carinata</i>	127
Summary and conclusion	129
Recommendation	137
References	138
Arabic summary	

دراسات بيئية وبيولوجية وفسيولوجية على بعض الانواع من الاسماك من قناة السويس والمناطق القريبة

رسالة مقدمة للحصول على درجة فلسفة الدكتوراه في علم الحيوان (بيئة مائية وفسيولوجيا)

من

آمال عمر بلق ماجستير في الاحياء جامعة الزاوية، ليبيا ٢٠٠٨

تحت إشراف

الأستاذ الدكتور/ وحيد محمود إمام أستاذ البيئة المائية، قسم علم الحيوان كلية العلوم، جامعة عين شمس الدكتور/ عماد حمدي أبو النجا أستاذ مساعد الكيمياء الحيوية المعهد القومي لعلوم البحار و المصايد

الأستاذ الدكتور/ عبد الحليم سعد عبده أستاذ البيئة المائية، قسم علم الحيوان كلية العلوم، جامعة عين شمس الأستاذ الدكتور/ خالد محمد المصيلحي أستاذ التلوث البحري المعهد القومى لعلوم البحار والمصايد

قسم علم الحيوان كلية العلوم – جامعة عين شمس ٢٠١٦

المشرفون:

الأستاذ الدكتور/ عبد الحليم عبده سعد

أستاذ البيئة المائية، قسم علم الحيوان، كلية العلوم، جامعة عين شمس

الأستاذ الدكتور/ وحيد محمود إمام

أستاذ البيئة المائية، قسم علم الحيوان، كلية العلوم، جامعة عين شمس

الأستاذ الدكتور/ خالد محمد المصيلحي

أستاذ التلوث البحري، المعهد القومي لعلوم البحار والمصايد

الدكتور/ عماد حمدي أبو النجا

أستاذ مساعد الكيمياءالحيوية، المعهد القومي لعلوم البحار والمصايد/ فرع السويس

المستخلص

تمت الدراسة على قناة السويس من بورسعيد شمالا حتى السويس جنوبا و قسمت إلى ثلاث قطاعات (بورسعيد والإسماعيلية والسويس) متضمنة ١٢ محطة. وسجلت درجة حرارة الماء أعلى معدل لها في فصل الصيف وأقل معدل لها في فصل الشتاء. بينما سجل الشتاء أعلى معدل للملوحة. تم رصد أعلى قيم للأكسجين الذائب والأكسجين الحيوى الممتص في فصل الخريف. وبالنسبة للأملاح المغذية كان أعلى معدل للأمونيا والنيتريت والنترات في فصل الصيف أما الفوسفات فكانت أعلى في فصل الربيع.

تم قياس العناصر الثقيلة (الرصاص والكادميوم والنحاس والزنك والحديد) في عينات الماء والرواسب ويعض أعضاء الأسماك من منطقة الدراسة،حيث سجل عنصر الكادميوم أقل القيم مقارنة بالعناصر الاخرى بينما سجل الحديد أعلى القيم في كل من الماء والرواسب والأسماك. وأظهرت نتائج سمية عنصرى الرصاص والنحاس أن الأخير أكثر سمية، وبدراسة تأثير هذين العنصرين على نشاط بعض الإنزيمات الكبدية فقد ارتفع نشاطها في الأربع والعشرون ساعة الأولى ثم هبط نشاطها إلى أقل من معدل المرجع بمرور زمن التعرض للملوث. بالإضافة الى دراسة النواحى البيولوجية لأحد أسماك المنطقة وهي سمكة السهلية.

الكلمات الدالة:

قناة السويس، الخصائص الفيزيائية والكيميائية، العناصر الثقيلة، السمية ،التأثير الفسيولوجي وبعض الخصائص البيولوجية لسمكة السهلية.

List of abbreviations

AAS Atomic absorption spectrophotometer

ACP Acid phosphatase

ALP Alkaline phosphatase

ALT Alanine transaminase

APDC Ammonium pyrolidine dithiocarbamate

AST Aspartate transaminases

BOD Biochemical oxygen demand

Cd Cadmium

CF Concentration factor

Co Cobalt

Cr Chromium

Cu Copper

DO Dissolved oxygen

Fe Iron

GIS Geographical information system

GSI Gonado-somatic index

GuW Gutted weight

GW Gonad weight

Hg Mercury

HIS Hepato-somatic index

LC Lethal concentration

LC₅₀ Median lethal concentration

LLR Length-length relationship

LW Liver weight

LWR Weight-length relationships

MIBK Methyl isobutyl Ketone

Mn Manganese

MPC Maximum Permissible Concentration

ND Not detected

NED Ethylene diamine dihydrochloride solution

Ni Nickel

OOM Oxidizable organic matter

Pb Lead

pH Hydrogen ion concentration

SCA Suez Canal Authority

SD Standard deviation

TW Total weight

WLR Weight-length relationship

Zn Zinc

LIST OF FIGURES

No.	Title of figures	Page
Fig. 1	Suez Canal map showing sampling stations and sectors	30
Fig.2	Seasonal variation of water temperature (°C) at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in Suez Canal.	49
Fig. 3	Seasonal variation of water pH at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in Suez Canal.	49
Fig. 4	Seasonal variation of water salinity ‰ at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in Suez Canal.	50
Fig. 5	Seasonal variation of water DO (mg O ₂ /l) at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in Suez Canal.	50
Fig. 6	Seasonal variation of water BOD (mg O ₂ /l) at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in Suez Canal.	51
Fig. 7	Annual mean of temperature (A), pH (B), salinity (C), DO (D) and BOD (E) in water at different stations along Suez Canal during 2013-2014.	52
Fig. 8	Seasonal variation of water ammonia (µg at.NH ₄ -N/l) at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in Suez Canal.	60
Fig. 9	Seasonal variation of water nitrite (µg atN/l) at different sectors (Port Said, Ismailia and Suez) during 2013-2014 in	60

	Suez Canal.	
Fig. 10	Seasonal variation of water nitrate (µg at	
	N/l) at different sectors (Port said, Ismailia	61
	and Suez) during 2013-2014 in Suez	01
	Canal.	
	Seasonal variation of water phosphate (µg	
Fig. 11	atN/l) at different sectors (Port Said,	61
	Ismailia and Suez) during 2013-2014 in	
	Suez Canal.	
	Annual mean of ammonia (A), nitrite (B),	
Fig. 12	nitrate (C) and phosphate (D) in water at	62
	different stations along Suez Canal during	
	2013-2014.	
E: 10	Seasonal variation of lead (µg/l) in water	70
Fig. 13	at different sectors (Port Said, Ismailia and	72
	Suez) Suez Canal during 2013-2014.	
	Seasonal variation of cadmium (µg /l) in	
Fig. 14	water at different sectors (Port Said,	72
	Ismailia and Suez) Suez Canal during	
	2013-2014.	
Fig. 15	Seasonal variation of copper (µg/l) in	
	water at different sectors (Port Said,	73
	Ismailia and Suez) Suez Canal during	
	2013-2014.	
E: ~ 16	Seasonal variation of zinc (µg/l) in water	72
Fig. 16	at different sectors (Port Said, Ismailia and	73
	Suez) Suez Canal during 2013-2014.	
Fig. 17	Seasonal variation of iron (µg/l) in water at different sectors (Port Said, Ismailia and	74
	Suez) Suez Canal during 2013-2014.	/ -
	Annual mean values of lead (A),	
Fig. 18	cadmium (B), copper (C), zinc (D) and	75
	cadimain (D), copper (C), zinc (D) and	