دور البروتين المتحد للهيبارين وتفاعل الشريان العضدي كاختبار تنبؤى في مرضى الحالات الحرجة المصابين بالتقيح

رسالة مقدمة من

الطبيب/ طلال ابراهيم حجاج

توطئة للحصول على درجة الدكتوراه

في طب الحالات الحرجة

تحت أشراف

اد جمال حامد احمد ابر اهیم

أستاذ طب الحالات الحرجة قسم طب الحالات الحرجة كلية الطب

ا د دالیا محمد رجب

أستاذ مساعد طب الحالات الحرجة قسم طب الحالات الحرجة كلية الطب

د نور ا اسماعیل محمد

مدرس طب الحالات الحرجة قسم طب الحالات الحرجة كلية الطب د امال فؤاد رزق

استشارى باثولوجيا اكلينيكية قسم طب الحالات الحرجة كلية الطب

جامعة القاهرة ٢٠١٥

ROLE OF HEPARIN BINDING PROTIEN (HBP) AZUROCIDIN CAP37 AND BRACHIAL ARTERY REACTIVITY AS PROGNISTIC TESTS IN CRITICALLY ILL PATIENTS WITH SEPSIS

Thesis submitted for partial fulfillment of doctorate Degree in Critical Care Medicine

Investigator

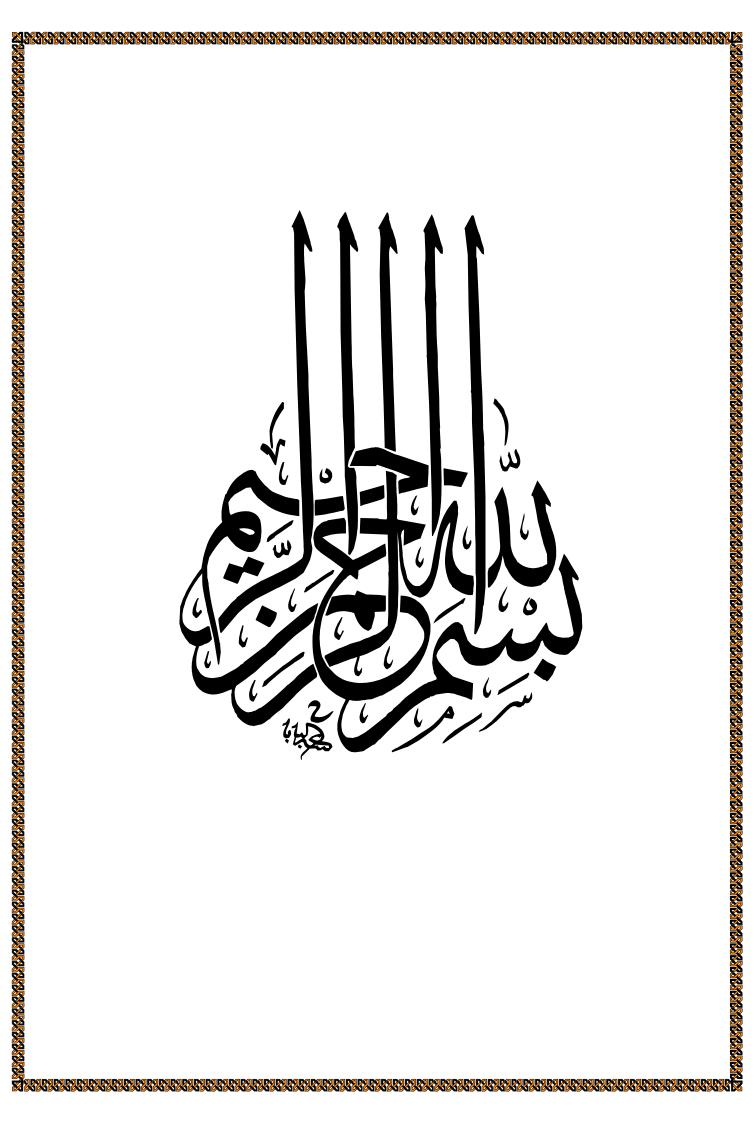
Talal Ibrahim Hagag

Supervisors

PROF. Dr. GAMAL HAMED IBRAHIM

Professor of Critical Care Medicine Critical Care Medicine Department Cairo University

Prof. Dr. Dalia Mohamed Ragab


Assistant Professor of Critical Care Medicine Critical Care Medicine Department Cairo University

Dr. Amal Foad Rizk.

Consultant of clinical pathology Critical Care Department Cairo University Dr.Nora Ismail Mohamed,

Lecturer of Critical Care Medicine Critical Care Department Cairo University

Cairo University
2015

Acknowledgement

First of all, thanks to God who granted me the ability to finish this work.

My deepest thanks and appreciation and sincere gratitude to prof. Dr. Wahed Radwan professor of Critical Care Medicine and chief of critical care department, Cairo University for his continuous encouragement, unlimited powerful support..

Words can never express my deepest gratitude and sincere appreciation to **Prof. Dr: Gamal Hamed** professor of Critical Care Medicine, Cairo University for his continuous encouragement, powerful support, extreme patient and faithful advice

My deepest thanks and appreciation and sincere gratitude to **prof. Dr. Dalia Ragab** assisstant professor of Critical Care Medicine, Cairo

University for her continuous encouragement, powerful support, extreme

patient and faithful advice and, **prof.Dr Amal Rizk** consultant of clinical

pathology in critical care department who spared no time and effort to

provide me with there valuable instructions and expert touches.

My deepest thanks and appreciation and sincere gratitude to Dr. Nora Ismail Lecturer of Critical Care Medicine Dept., Cairo University who spared no time and effort to provide me with there valuable instructions and expert touches. My deepest thanks and appreciation and sincere gratitude to Dr. Mohamed Reda specialist of radiology who participate in workshop of duplex and who spared no time and effort to provide me with there valuable instructions and expert touches.

My truthful love to my family who were and will always be by my side, all my life.

Talal hagag

Abstract

ROLE OF HEPARIN BINDING PROTIEN (HBP) AZUROCIDIN CAP37 AND BRACHIAL ARTERY REACTIVITY AS A PROGNISTIC TESTS IN CRITICALLY ILL PATIENTS WITH SEPSIS

Introduction:

Rapid detection of the presence as well as optimized treatment of severe sepsis and septic shock is crucial for successful outcome.

Heparin-binding protein (HBP), a potent inducer of increased vascular permeability, is a potentially useful biomarker for predicting outcome in severe sepsis patients. Ultrasound measurements of brachial artery reactivity in response to stagnant ischemia provide estimates of microvascular function and conduit artery endothelial function.

We hypothesized that brachial artery reactivity and HBP levels would independently predict severe sepsis occurrence and mortality.

Our Aim is to identify the role of both Heparin-binding protein (HBP) and brachial artery reactivity Compared to APACHE II and SOFA scores as predictors of morbidity and mortality in critically ill septic patients

Methods: An observational prospective controlled study of patients admitted in the Critical Care Department at Cairo University Egypt. Patients were classified into two groups GROUP I which included 38 patients: Sepsis (2 patients); Severe sepsis (20 patients) who had sepsis and target organ damage and Septic shock (16 patients) who had severe sepsis and developed inadequate tissue perfusion. Control group: GROUP II includes 10 critically ill patients who did not develop sepsis in their hospital clinical course. HBP Blood samples were collected at three time points during six days after admission. We measured brachial artery reactivity in 38 severe sepsis patients and in 10 control patients acute illness other than sepsis, Measurements were compared in severe sepsis patients versus control subjects and in survivors versus non-survivors. Multivariable analyses were also conducted.

Results: Significant difference was detected between Survivors and Non-survivors in max SOFA score, Baseline WBCs, WBCs at 48 and 96 h as well as Baseline HBP, HBP at 48h and 96 h, where the result were in non-survivors versus survivors respectively {5.9(4.8-6.6)} ng/ml vs {1.2(0.4-1.6)} ng/ml at baseline; {6.5(4.8-7.5)} ng/ml vs {1.2(1.2-1.6)} 1.7) ng/ml at 48 hours and lastly {6.0(4.5-6.6)} ng/ml vs {1.12(0.8-1.4)} ng/ml at 96 hours. (ROC) curve analysis for prediction of severe sepsis, septic shock using Baseline HBP, AUC:0.982, P < 0.0001 with sensitivity 94.7% specificity 100%, cut-off level >1.9 ng/ml, (ROC) curve analysis for prediction of mortality using Baseline HBP level, (AUC) =0.99, P-value< 0.0001, Sensitivity 91.6%, Specificity 100%, associated criterion >1.9 ng/ml. Highly survivors significant difference exists between and Non-survivors respectively FMD, Baseline velocity, Hyperemic velocity, Velocity difference and Post-deflation RI. The results were in nonsurvivors versus survivors respectively for FMD% {2.3(1.9-2.8)} % vs {5.5(4.7-5.8)} %. Baseline velocity cm/cardiac cycle 12(9.7-14.3)} vs {20(17.6-22)}. Hyperemic velocity (cm/cardiac cycle) was {20.5(18-25)} vs{52.3(47.5-55)} and for Velocity difference (cm/cardiac cycle {8.55(8-10)} vs {31.75(28.3-34)} And for Post-deflation RI { 0.78(0.72- $0.81)\}\ in\ Non-survivors\ \ vs\{0.53(0.48-0.55)\}\ Survivors\ .\ (ROC)\ curve\ analysis\ for\ prediction\ of\ severe\ sepsis/septic$ shock using:-FMD: (AUC) =0.97, P-value <0.0001, Sensitivity 94.7%, Specificity 100%, PPV = 100%, NPV = 83.3% and associated criterion ≤3.4(%), Hyperemic velocity (AUC) =1, P-value <0.0001, Sensitivity 100%, Specificity 100%, PPV = 100%, NPV = 100% associated criterion ≤39 (cm/card cycle). (ROC) curve analysis for prediction of mortality using: FMD, (AUC) =1, P-value<0.0001, Sensitivity 100%, Specificity 100%, PPV = 100%, NPV = 100% and associated criterion ≤3.4%, Hyperemic velocity (AUC) =1, P-value<0.0001, Sensitivity 100%, Specificity 100%, PPV = 100%, NPV = 100% and associated criterion ≤39 cm/cardiac cycle. Kaplan-Meier survival analysis for patients with FMD < 3.4% or > 3.4%, p-value 0.046. Hyperemic velocity < 30 or > 30 cm/c cardiac cycle, p-value 0.046 and Velocity difference < 13 or > 13 cm/c cycle, p-value: 0.046.

Conclusions: Plasma HBP levels and brachial artery reactivity were significantly different in patients with severe sepsis or septic shock compared to non-septic ICU patients, and both tests can predict morbidity and mortality in critically ill septic patients. Comparison of the receiver-operating characteristic (ROC) curves for prediction of 28-mortality using the SOFA max, APACHE II score, HBP max, FMD and hyperemic velocity, there wasn't different between variable.

Contents

Introduction	1
Aim of The Work	5
Review of Literature	
 Definition, diagnosis &Pathophysiology sepsis. 	6
Heparin-Binding Protein	31
 Ultrasound assessment of flow-mediated dilation and hyperemic velocity: a tutorial 	41
Patients & Methods	72
Patients & Methods Results	72 78
Results	78
Results Discussion	78 123
Results Discussion Summary	78 123 142

List of Tables

Table No.	Title	Page
Table (1)	: The SOFA score	9
Table (2)	. Inflammatory mediators in sepsis	13
Table (3)	Evidence of alterations in blood velocity and blood flow as a consequence of insonation angle	50
Table (4)	. Absolute difference and variability between manual and software evaluations of FMD determinants	65
Table (5)	Difference in fmd and determinants using 3, 5, and 10 second data smoothing averages	67
Table (6)	. Demographic data of patients group G I and control G II	78
Table (7)	Heamodynamic data of patients GI and control G II group at recruitment and end of follow up.	79
Table (8)	Scoring system in of patients GI and control G II group at recruitment and end of follow up.	80
Table (9)	Lab parameters in patients GI and control G II at baseline,48 and 96 hours	81
Table (10)	. ABG parameters in patients G1 and control groupG11 at recruitment and end of follow up.	83
Table (11)	Duplex parameters in patients GI and control G II group.	84
Table (12)	Demogrfic data in comparison of patients GI and control G II group: categorical variables.	87
Table (13)	. Morbidity & mortality in comparison of cases GI and controls G II	88
Table (14)	. Demographic data of comparison of survivors and non survivors	89
Table (15)	. Source of infection in comparison between survivors and non-survivors	90
Table (16)	: Microbiology comparison between survivors and non- survivors	91
Table (17)	Heamodynamic data comparison of survivors and non-survivors at recruitment and end of follow up.	92

Table (18)	:	ABG parameters in comparison of survivors and non-survivors at recruitment and end of follow up.	98
Table (19)	:	Lab parameters in comparison of survivors and non-survivors	94
Table (20)	:	Duplex parameters in comparison of survivors and non-survivors:	95
Table (21)	:	Scoring system in comparison of survivors and non-survivors at recruitment and end of follow up.	96
Table (22)	:	Morbidity and mortality in survivors and non-survivors	99
Table (23)		HBP as predictor of severe sepsis/septic shock	100
Table (24)	:	Prediction of severe sepsis/septic shock using duplex parameter.	102
Table (25)		Prediction of mortality using hbp level at various times	106
Table (26)		Prediction of mortality using duplex parameters	108
Table (27)		Prediction of mortality using variable parameters	112
Table (28)		Comparison of the receiver-operating characteristic (roc) curves for prediction of 28-mortality using the SOFAMAX, APACHE II SCORE, HBPMAX, FMD, or hyperemic velocity	115
Table (29)		This table shows trials similar to our article	124

List of Figures

Figure No.	Title		Page
Figure (1)	:	PIRO	40
<i>b</i> ()	F		10
Figure (2)	:	Potential outcomes of mediator release in sepsis	14
Figure (3)	:	Complement activation in sepsis	18
Figure (4)	:	The Response to Pathogens, Involving "Cross-Talk"	29
		among Many Immune Cells, Including	
		Macrophages, Dendritic Cells, and CD4 T Cells.	
Figure (5)	:	The image quality of B-mode images using different	47
		frequency linear probes.	
Figure (6)	:	The determination of blood velocity and blood flow	58
		using different placements of the Doppler sample	
		gate	
Figure (7)	:	The relationships between flow-mediated dilation	69
		(FMD) and different assessments of shear rate to be	
		considered when normalizing FMD.	
Figure (8)	:	. Box plot showing HBP levels at various times in	82
		cases (GI) and controls(GII)	
Figure (9)	:	Box plot showing FMD in both study groups	85
Figure (10)	:	Box plot showing baseline velocity, hyperemic	85
		velocity, and velocity difference in cases and	
		controls	
Figure (11)	:	Box plot showing pre-occlusion and post-deflation	86
		RI in cases and controls	
Figure (12)	:	Mortality rate in both study groups	88
Figure (13)	:	Box plot showing HBP level at various times in	96
		Survivors and Non-survivors	

Figure (14)	:	Box plot showing FMD in Survivors and Non- survivors	97
Figure (15)	•	Box plot showing baseline velocity, hyperemic velocity, and velocity difference in Survivors and Non-survivors	97
Figure (16)	:	Box plot showing pre-occlusion and post-deflation RI in Survivors and Non-survivors	98
Figure (17)	:	Percentage of cases and controls among Survivors and Non-survivors.	99
Figure (18)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using baseline HBP level	100
Figure (19)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using HBP level at 48 h	101
Figure (20)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using HBP level at 96 h.	101
Figure (21)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using FMD	103
Figure (22)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using baseline velocity	103
Figure (23)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using hyperemic velocity	104
Figure (24)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using velocity difference	104
Figure (25)	:	Receiver-operating characteristic (ROC) curve for	105

		prediction of severe sepsis/septic shock using pre- occlusion RI	
Figure (26)	:	Receiver-operating characteristic (ROC) curve for prediction of severe sepsis/septic shock using post-deflation RI	105
Figure (27)	:	Receiver-operating characteristic (ROC) curve for prediction of mortality using baseline HBP level	106
Figure (28)	:	Receiver-operating characteristic (ROC) curve for prediction of mortality using HBP level at 48 h	107
Figure (29)	:	Receiver-operating characteristic (ROC) curve for prediction of mortality using HBP level at 96 h	107
Figure (30)		Receiver-operating characteristic (ROC) curve for prediction of mortality using FMD	109
Figure (31)		Receiver-operating characteristic (ROC) curve analysis for prediction of mortality using baseline velocity	109
Figure (32)		Receiver-operating characteristic (ROC) curve for prediction of mortality using hyperemic velocity	110
Figure (33)		Receiver-operating characteristic (ROC) curve for prediction of mortality using velocity difference	110
Figure (34)		Receiver-operating characteristic (ROC) curve for prediction of mortality using pre-occlusion RI	111
Figure (35)		Receiver-operating characteristic (ROC) curve for prediction of mortality using post-deflation RI	111

Figure (36)	Receiver-operating characteristic (ROC) curve for prediction of 28-mortality using the SOFAmax.	113
Figure (37)	Receiver-operating characteristic (ROC) curve for prediction of 28-mortality using the APACHE II score.	113
Figure (38)	Receiver-operating characteristic (ROC) curve for prediction of 28-mortality using the HBPmax.	114
Figure (39)	Comparison of the receiver-operating characteristic (ROC) curves for prediction of 28-mortality using the SOFAmax, APACHE II score, HBPmax, FMD, or hyperemic velocity	116
Figure (40)	Kaplan-Meier survival curves for patients with baseline HBP >3.4 or ≤3.4 ng/ml	117
Figure (41)	Kaplan-Meier survival curves for patients with HBP >3.8 or ≤3.8 ng/ml at 48 h	117
Figure (42)	Kaplan-Meier survival curves for patients with HBP >1.6 or ≤1.6 ng/ml at 96 h	118
Figure (43)	Kaplan-Meier survival curves for patients with pre- occlusion diameter ≤4 or >4 cm	118
Figure (44)	Kaplan-Meier survival curves for patients with post-deflation diameter ≤4.3 or >4.3	118
Figure (45)	Kaplan-Meier survival analysis for patients with FMD <3.4% or ≥3.4%	119

Figure (46)	Kaplan-Meier survival curves for patients with baseline velocity ≤16 or >16 cm/cardiac cycle	119
Figure (47)	Kaplan-Meier survival curves for patients with hyperemic velocity ≤30 or >30 cm/cardiac cycle	120
Figure (48)	Kaplan-Meier survival curves for patients with velocity difference ≤13 or >13 cm/cardiac cycle	120
Figure (49)	Kaplan-Meier survival curves for patients with preocclusion peak velocity >64 or ≤64 cm/cardiac cycle	120
Figure (50)	Kaplan-Meier survival curves for patients with post-deflation peak velocity >64 or ≤64 cm/cardiac cycle.	121
Figure (51)	Kaplan-Meier survival curves for patients with preocclusion RI >0.76 or ≤0.76 cm/cardiac cycle	121
Figure (52)	Kaplan-Meier survival curves for patients with post-deflation RI >0.64 or ≤0.64 cm/cardiac cycle	122

List of Abbreviations

A-a gradient : Alveolar arterial gradient

ACTH : AdrenoCorticotrophic Hormone

ADP : Adenosine Diphosphate

ALI : Acute Lung Injury

ALB : Albumin

APACHE II : Acute Physiology and Chronic Health evaluation

APTT : Activated Partial thromboplastine time

ARDS : Acute respiratory distress syndrome

ATP : Adenosine Triphosphate

AUC : Area under the curve

 \boldsymbol{C} : Sound velocity

CAP37 : Cataionic antimicrobial protein of 37

CAP : Community Acquired Pneumonia

CLP : Ceacal Ligation&Puncture

CNS : Central Nervous System

CRH : Corticotropine Releasing Hormone

CRP : C Reactive Protein

CT : Computed Tomography

CVC : Central Venous Catheter

CVP : Central Venous Pressure

CVS : Cerebrovascular stroke

DC : Dentretic cells

DIC : Dissemenated Intravascular Coagulopathy

DM : Diabetes Mellitus

Dob : Dobutrex

DOP : Dopamine

DVT : Deep Venous Thrombosis

E Coli : Escherichia Coli

EPI : Epinephrine

eNOS : Endothelial nitric oxide synthetase

fD : Doppler shift

FDP : Fibrin Degradation Products

FFP : Fresh Frozen Plasma

FMD : Flow mediated dilatation

fMLP : Formyl-methyl-leucyl-phenylalanin

fO : Transmited frequency

G.CSF : Granulocyte Colony Stimulating Factors

GNBs : Gram Negative Bacilli

HAP : Hospital Aquired Pneumonia

HBP : Heparin binding protein

Hb : Hemoglobin

HIV : Human Immunodeffiecincy Virus

HR : Heart rate

HTN : Hypertension

ICU : Intensive Care Unite

IL2 : Interlukine 2

IL6 : Interlukine 6

K : potassium