

PCR gene detection among HARMONY collection of Staphylococcus aureus from bovine milk and human nasal carriage epidemiological and genetic findings

A thesis presented by

Alaa Tharwat Abd El Monem B.V.Sc. (2006), Beni Suief University

For the degree of M.V.Sc.in Veterinary Medical Science Microbiology (Bacteriology, Immunology and Mycology)

Under the supervision of

Prof. Dr. Wagih Armanious Gad El Said

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Sabry Darwish Morgan

Professor of Milk Hygiene and Control Faculty of Veterinary Medicine Cairo University

Lec. Dr. Rasha Mohammed Mahmoud Khairy

Lecturer of Microbiology Faculty of Human Medicine Minia University

(2015)

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Approval Sheet

This is to approve that the dissertation presented by

Alaa Tharwat Abd El-Monem

For M.V.Sc.Degree (Bacteriology, Immunology and Mycology) has been approved by the examining committee.

PCR gene detection among harmony collection of Staphylococcus aureus from bovine milk and human nasal carriage. Epidemiological and genetic findings.

Prof. Dr. Mohamed Nabel Hassan

Professor of Microbiology, Faculty of Veterinary Medicine, Zagazig, University.

Prof. Dr. Hydee Mohamed Shawky

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. WAGIH ARMANIOUS GAD EL SAID
Professor of Microbiology, Faculty of Veterinary Medicine, Cairo

University. (Supervisor)

PROF. DR. SABRY DARWISH MORGAN

Professor of Milk Hygiene and Control, Faculty of Veterinary Medicine, Cairo University (Supervisor)

/ /2015

Supervision Sheet

Prof. Dr. Wagih Armanious Gad El Said

Professor of Microbiology Faculty of Veterinary Medicine Cairo University.

Prof. Dr. Sabry Darwish Morgan

Professor of Milk Hygiene and control Faculty of Veterinary Medicine Cairo University.

Dr. Rasha Mohammed Mahmoud Khairy

Lecturer of Microbiology Faculty of Human Medicine Minia University.

(2015)

Faculty of Veterinary Medicine Department of Microbiology

Cairo University Abstract

Name: Alaa Tharwat Abd El Monem. Date and place of birth: 31/3/1985-Minia.

Nationality: Egyptian.

Degree: Master in Veterinary Medicine Sciences. **Specialty:** Bacteriology, Immunology and Mycology.

Supervisors:

Prof.Dr.Wagih Armanious Gad El Said

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University.

Prof.Dr.Sabry Darwish Morgan

Professor of Milk Hygiene and control, Faculty of Vet. Medicine, Cairo University.

Dr. Rasha Mohammed Mahmoud Khairy

Lecturer of Microbiology, Faculty of Human Medicine, Minia University.

Title of thesis:" PCR gene detection among HARMONY collection of *Staphylococcus aureus* from bovine milk and human nasal carriage epidemiological and genetic findings"

Abstract

"PCR gene detection among HARMONY collection of *Staphylococcus aureus* from bovine milk and human nasal carriage epidemiological and genetic findings" Alaa Tharwat Abd El Monem. Cairo Univ. Fac. Vet. Med. Thesis; M.V.Sc.; Bacteriology, Immunology and Mycology, 2015.

Staphylococcus aureus (S.aureus) is considered one of the most important pathogens to humans and animals. The emergence of methicillin-resistant S. aureus (MRSA) strains and other antimicrobial agents has become a major concern .316 samples (216 from Bovine milk and 100 from nasal swabs of human) from Minia governorate were used in this study for isolation and identification of S.aureus from milk in healthy & diseased animals as well as from human nasal carriers, detection of the diversity between animal and human isolates by using phenotypic methods and amplification of certain genes; coa and mecA using PCR .all S. aureus isolates of the study (45) showed expression of mec A gene, although 96.77% of bovine isolates only was cefoxitin resistant by disk diffusion method so the detection of mec A gene is important for determination of MRSA. The 30 isolates of bovine milk showed 7 types of coa gene. The sizes of PCR amplicons obtained ranged from approximately 80 to approximately 640 bps. On the other hand the 14 isolates of human nasal swabs showed 6 types of coa gene, the size of PCR amplicons obtained after amplification of isolates from human nasal swabs ranged from approximately 80 to approximately 800 bps.it was noted that one isolate from bovine milk, identified as coagulase positive by tube coagulase test was found to be negative with PCR amplification of the gene, so the use of both phenotypic and molecular detection of S. aureus strains is very important. In conclusion, molecular techniques remain the most sensitive methods in detecting S. aureus, and with 100% accuracy in detecting MRSA. This study has shown that mastitis in the studied regions was caused by S. aureus strains harboring more than one coa genotype. This indicates that the source of infection may be transmitted from animal to human or vice versa.

Key words: S. aureus, Antimicrobial sensitivity, MRSA, MSSA, Mec A and Coa genes.

Dedication

My father and my mother

My brother (Abd El–Khalek)

My sisters (Shaimaa and Mariem)

My husband (Mahmoud El –Lithy)

> My Little baby (Goody)

Acknowledgement

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, We praise Him, seek His help, and ask for His forgiveness. I am thankful to Allah, who supplied me with the courage, the guidance, and all praises to Allah for the strengths and His blessing in completing this thesis.

Special thanks and My sincere appreciations go to Professor Dr. Wagih A. Gad EI – Said. Professor of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine Cairo University, who reviewed my thesis in advance and gave me his comments to improve my defense presentation. I am truly thankful for his steadfast integrity and selfless dedication to both my personal and academic development.

I express my profound sense of reverence to my promoter Professor Dr. Sabry Darwish Morgan. Professor of milk Hygiene and control, Department of Food Hygiene and control, Faculty of Veterinary Medicine Cairo University, who gave me the opportunity to work in the department of Food Hygiene and control. His continuous support, motivation and untiring guidance have made this dream come true. His vast knowledge, calm nature and positive criticism motivated me to starve for nice results.

I also would like to express my deepest gratitude to lecturer Dr.Rasha M. Khiry, lecturer of Microbiology, Department of Microbiology, Faculty of Medicine Minia University. my graduate advisor, who always believed in me and never hesitate to provide relentless

support and motivation at all times for her critical but valuable suggestions for my thesis and for supporting me during these past five years. And for her excellent guidance, caring, patience.

I especially thank my mom, dad, brother and sisters. And special thanks go my best friends (too many to list here) for Nemat Ibrahim and Asmaa Abdel- latif.

Last but not least, I wish to express my sincere thanks to all those who have one way or another helped me in making this study a success.

List Of Contents

LIST OF TABLES	III
LIST OF FIGURES	V
LIST OF PHOTOS	VI
LIST OF ABBREVIATIONS	VI
INTRODUCTION	1-4
REVIEW OF LITERATURE	5
2.1. Historical perspective	5
2.2. Prevalence of S. aureus in bovine with special reference to	6
subclinical mastitis	
2.3. Prevalence of S. aureus in human	17
2.4. Characteristics, isolation and Laboratory approach for	22
identification of S. aureus	
2.5. Human and animal cross infection with Methicillin –	29
resistant S. aureus (MRSA) as a zoonoses and reverse	
Zoonoses	
2.6. Hazard characterization of S. aureus	36
2.7. Antibiogram of Methicillin - resistant S. aureus (MRSA)	48
2.8. Molecular Epidemiology of MRSA	58
MATERIAL & METHODS	71
3.1. Materials	71
3.1.1. Collected samples	71
3.1.1.1 Milk samples	71
3.1.1.2. Human samples	71
3.1.2. Media of isolation and identification of the bacterial	71
isolates	71
3.1.2.1. Readymade-media	71
3.1.2.2. Prepared media.	72 72
3.1.2.2.1. Soft agar	72
3.1.3. Reagents and solutions	74
3.1.4. Materials used for California mastitis test (CMT)	76
3.1.5. Materials used for antimicrobial susceptibility	76
testing	70
3.1.6. Materials used for preservation of isolates	76
3.1.7. Materials used for PCR testing	77
3.2 Methods	79

3.2.1. Collection of samples	79
3.2.1.1. Milk samples	79
3.2.1.2. California mastitis test "CMT	80
3.2.1.3. Human samples	81
3.2.2. Isolation of Staphylococci	81
3.2.3. Identification of the isolates	81
3.2.3.1. Microscopical examination	81
3.2.3.2. Biochemical identification	82
3.2.3.2.1. Catalase test	83
3.2.3.2.2. Growth on mannitol salt agar	84
3.2.3.2.3. Growth on nutrient agar	84
3.2.3.2.4. Coagulase test	84
3.2.3.2.5. DNase test	8.
3.2.3.2.6. Voges-Proskauer test	8.
3.2.3.2.7. Blood hemolysis test	86
3.2.3.2.8. Gelatin liquefaction test	80
3.2.4. Antimicrobial Susceptibility of S. aureus	8'
3.2.5. PCR procedure	88
3.2.5.1. DNA Extraction	88
3.2.5.1.1. Sample Sizing step	88
3.2.5.1.2. DNA Extraction Step	88
3.2.5.1.3. Amplification of <i>coa</i> gene and <i>mecA</i> gene	90
RESULTS	9
DISCUSSION	11
CONCLUSION	13
SUMMARY	13
REFERENCES.	14
ADARIC SIIMMADV	17

List Of Tables

Table	Title	Page
1	Primers used in amplification of <i>coa,mec A</i> genes of <i>S.aureus</i> .	78
2	Interpretation of california mastitis test (CMT)	80
3	Characteristics differentiating the species of the genus Staphylococcus.	82,83
4	Interpretation of antimicrobial susceptibility test results.	87
5	Screening of quarter cow's milk samples using CMT (No.88).	92
6	Screening of quarter buffaloes milk samples using CMT (No.98).	93
7	The frequency distribution of subclinical mastitis in quarter milk samples using CMT.	94
8	Illustration of subclinical mastitis scores by using CMT in quarter milk samples.	95
9	Frequency distribution of subclinically affected quarters according to CMT.	97
10	Prevalence of staphylococci in examined samples.	98
11	Prevalence of coagulase positive from <i>Staphylococcus</i> isolates.	99
12	Endopigment production by recovered coagulase positive isolates.	101
13a	Results of grouping coagulase positive isolates according to biochemical tests.	103
13b	Results of grouping coagulase positive isolates according to biochemical tests	106

14	Antimicrobial susceptibility results of <i>S.aureus</i> isolates from bovine milk.	108
15	Antimicrobial susceptibility results of <i>S.aureus</i> isolates from human nasal swabs.	110
16	Coagulase genotypes of <i>S. aureus</i> isolates from bovine milk.	114
17	Coagulase genotypes of <i>S. aureus</i> isolates from human nasal swabs.	116

List Of Figures

Fig.	Title	Page
1	The frequency distribution of subclinical mastitis in quarter milk samples using CMT.	94
2	Illustration of subclinical mastitis scores by using CMT in quarter milk samples.	96
3	Frequency of subclinically affected quarters according to CMT.	97
4	Prevalence of staphylococci in examined samples.	98
5	Prevalence of coagulase positive from Staphylococcus isolates.	100
6	Endopigment production by recovered coagulase positive isolates.	101
7a	Results of grouping coagulase positive isolates according to biochemical tests.	104
7b	Results of grouping coagulase positive isolates according to biochemical tests	106
8	Antimicrobial susceptibility results of <i>S.aureus</i> isolates from bovine milk.	109
9	Antimicrobial susceptibility results of <i>S.aureus</i> isolates from human nasal swabs.	110

List of Photos

No	Title	Page
1.	Growth of <i>Staphylococcus aureus</i> on nutrient agar (<i>S. aureus</i> strains showed golden yellow colonies).	102
2.	Gram stain of <i>S. aureus</i> cells which typically occur in clusters.	102
3.	Growth of Staphylococcus aureus on MSA.	104
4.	S. aureus colonies on sheep blood agar plate (Colonies of S. aureus are frequently Surrounded by zones of clear beta-hemolysis).	105
5.	Positive VP test (Acetoin production)	105
6.	Positive tube coagulase test (S.aureus)	107
7.	Positive catalase test(<i>S.aureus</i>)	107
8.	Antimicrobial susceptibility of <i>S.aureus</i> .	111
9.	Results of <i>mecA</i> gene PCR.	112
10.	Coa gene polymorphism for S.aureus isolates from bovine Milk.	115
11.	Coa gene polymorphism for S. aureus isolates from human nasal swabs.	116

List Of Abbreviations

ACVIM	American college of Veterinary Internal Medicine
AD	Atopic dermatitis
AK	Amikacin
AmX	Amoxicillin
API	Analytical profile index
AIDS	Acquired immune deficiency syndrome
bp	base pair(s)
CA-MRSA	Community- associated Methicillin-resistant Staphylococcus aureus
°C	Degrees Celsius
CC	clonal complex
CC398	a particular MRSA clonal complex
C.F.U	Colony forming unit
chp	Chemotaxis inhibitory protein
clfA	Clumping factor A
CLSI	Clinical and Laboratory Standard Institute
Cna	Collagen adhesin
CMT	California mastitis test
coa	Coagulase gene(Staphylocoagulase)

COAG	Coagulase gene
CoPS	Coagulase positive Staphylococcus aureus
CoNS	Coagulase-negative Staphylococcus aureus
CPS	Coagulase positive staphylococci
CV genes	Core variable genes
DA	Clinamycin
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetra acetic acid
entA	enterotoxin A
f	forward
fnbA	fibronectin-binding protein A
FOX	CEFOXITIN
g	gram
HA-MRSA	Healthcare-associated Methicillin-resistant Staphylococcus aureus
IMI	intramammary infection
L	liter
LA-MRSA	Livestock-associated Methicillin-resistant Staphylococcus aureus
L.F.	Left fore
L.H.	Left hind