

FRAMEWORK FOR OPTIMIZING SUSTAINABLE INFRASTRUCTURE BRIDGE PROJECTS

 $\mathbf{B}\mathbf{y}$

AHMED NOUH AHMED MESHREF

A Thesis Submitted to
The Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY in STRUCTURAL ENGINEERING

FRAMEWORK FOR OPTIMIZING SUSTAINABLE INFRASTRUCTURE BRIDGE PROJECTS

By

AHMED NOUH AHMED MESHREF

A Thesis Submitted to
The Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

Under Supervision of

Prof. Dr. Moheeb El-Said Ibrahim

Prof. Dr. Mohamed Mahdy Marzouk

Professor of Construction Engineering
and Management
Structural Engineering Department
Faculty of Engineering
Cairo University

Professor of Construction Engineering and Management Structural Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT September-2014

FRAMEWORK FOR OPTIMIZING SUSTAINABLE INFRASTRUCTURE BRIDGE PROJECTS

By

AHMED NOUH AHMED MESHREF

A Thesis Submitted to
The Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

Approved by Examining Committee:

Prof. Moheeb Elsaid Ibrahim
Prof. Mohamed Mahdy Marzouk
Professor of Construction Engineering and Management - Structural Engineering Department - Cairo University
Prof. Adel Ibrahim El-Dosouky
Professor of Construction Project Management - Structural Engineering Department - Tanta University
Prof. Mohamed Abd El Latif Bakry Manager of Strategic Management Department - Social Development Fund

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT September-2014 **Engineer's Name:** Ahmed Nouh Ahmed Meshref

Date of Birth: 16/04/1980 **Nationality:** Egyptian

E-mail: ahmednouh80@yahoo.com

Phone:
Address:
Registration Date: 17/06/2008
Awarding Date: .../.../......

Degree: Philosophy of Doctoral

Department: Structure Engineering Department

Supervisors:

Prof. Prof. Moheeb Elsaid Ibrahim Prof. Mohamed Mahdy Marzouk

Examiners:

Prof. Prof. Moheeb Elsaid Ibrahim Prof. Mohamed Mahdy Marzouk Prof. Adel Ibrahim El-Dosouky Prof. Mohamed Abd El Latif Bakry

Title of Thesis: FRAMEWORK FOR OPTIMIZING SUSTAINABLE

INFRASTRUCTURE BRIDGE PROJECTS

Key Words: Green bridges, Rating Systems, Simo's Procedure,

MOOMS.

Summary:

Proper development and operation of infrastructure projects, such as bridges and highways, can contribute significantly to the mission of sustainable development. This thesis introduces a key-list of gathered important criteria that affect the sustainability of bridge projects. The initial list of criteria has been identified by unstructured interviews. Then, structured interviews and questionnaire survey have been conducted to identify the final list that is deemed important in rating green bridges. Final criteria results from this thesis are used to develop a green bridge rating system to achieve sustainable development. Degree of importance and weights of these criteria are determined using Simo's procedure. Five classes of bridges are proposed to judge their status with respect to sustainability. This research proposes a conceptual instrument that measures the user-based assessment of material sustainability and validates decision-maker's perceptions in order to evaluate the contribution of characteristics in materials selection. The contribution of this research is the development of a framework that consists of two modules for selecting appropriate building materials in order to help decision-makers with the appropriate selection of conventional or green bridges materials. The modules of the framework are; materials sustainability score (MSS) module and multi-objective optimization (MOO) module. The proposed framework helps to pursue sustainable environmentally friendly practices when selecting of bridges materials based on the proposed rating system in this thesis regarding actual costs. A case study is presented to demonstrate the use of the proposed framework.

ACKNOWLEDGEMENTS

First, I would like to express my grateful full respect and many thanks to my parents for their continuous support and everything done for me. There are no thanking words that can express my appreciation for both of them for surrounding me with their care and love. I would specially dedicate this thesis to them. I would like to thank very much my supervisors. **Prof.Moheeb El-Said Ibrahim** for his great support and valuable advices, and special great thanks to **Prof. Mohamed Mahdy Marzouk** for surrounding me with their great experience and valuable knowledge. Also I would like to extend a special thanks to my examiners **Prof. Adel Ibrahim El-Desouky,** and **Prof. Mohamed Abd-Ellatif Bakry** for their valuable supervision, precious advice and continuous encouragements. I would like to express my thanks to all engineers and workers supported me from Arab Contractors Co., General Authority for Roads and Bridges, General Nile for Roads and Bridges, Cairo university staff, workers, and all the consultants for their friendly support and valuable information.

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vi
ACKNOWLEDGEMENT	vii
NOMENCLATURE	viii
ABSTRACT	X
CHAPTER 1: INTRODUCTION	
1.1 General	1
1.2 Sustainable Bridges: An Overview	1
1.3 Research Motivation	4
1.4 Research Objectives	4
1.5 Research Methodology	5
1.6 Scope of work	5
CHAPTER 2: LITERATURE REVIEW	
2.1 General	8
2.2 Sustainability in Construction Projects	8
2.3 Current Sustainable Practices	9
2.3.1 Sustainable Design	9
2.3.2 Sustainable Construction	13
2.3.3 Sustainable Bridge Maintenance	14
2.4 Approaches to Green Building Concepts	16
2.4.1 Material Efficiency	16
2.4.2 Energy Efficiency	17
2.5 Green Building Life-Cycle Analysis	19
2.5.1 Background of LCA Applications	20
2.6 Existing Major Green Rating Systems	22
2.6.1 Leadership in Energy and Environmental Design (LEED®)	
- New Construction	23
2.6.2 EnvisionTM Rating System	24
2.6.3 GreenLITES Project Design Certification Program	25

2.6.4 Sustainable Highway Self-Evaluation Tool			
2.6.5 Green Pyramids	26		
2.7 Practices in Bridge Design, Construction, and Maintenance	27		
2.8 Life Cycle Assessment Applications	29		
2.8.1 Bridge LCA	29		
2.8.2 Available LCA Tools	31		
2.9 Academic Origin Sustainability Programs	32		
2.10 Proposed Criteria that influence Sustainability of Bridges Projects	35		
2.11 Multi Objective Optimization	37		
2.11.1 An Overview	37		
2.11.2 Multi Objective Optimization Methods	40		
2.12 Summary	42		
CHAPTER 3: GREEN BRIDGES RATING SYSTEM			
3.1 General	43		
3.2 General Philosophy	43		
3.3 System Boundaries	44		
3.4 Green Bridges Categories	45		
3.4.1 Credits based on fundamental sustainability values	45		
3.4.2 Credit weighting overview	46		
3.5 Green Bridges Rating System Implementation	48		
3.6 Green bridges credits and their general intent	48		
3.7 Identification of Criteria	50		
3.7.1 Structured Interviews	52		
3.7.2 Interviews Participants	52		
3.7.3 Interviews Results	55		
3.8 Summary	61		
CHAPTER 4: CRITERIA WEIGHTS ESTIMATION USING	r		
SIMO'S PROCEDURE			
4.1 General	62		
4.2 Criteria Weights Estimation Procedure			
4.3 Description of Simo's procedure			

4.4 Simo's Rating Criteria Weights		64
4.5 Summary		70
CHAPTER 5:	GREEN BRIDGES MATERIAL SELECTION	
	IMPLEMENTATION FRAMEWORK	
5.1 General		71
5.2 Material Selec	tion Approaches	71
5.3 Material Selec	tion Procedure	72
5.4 Green Bridges	Materials Data Sources	72
5.5 Green Bridges	s Credits Dimensions for Materials Selection	73
5.5.1 Intervi	ew Survey (B) Results	73
5.5.2 Intervi	ew Survey (C) Results	75
5.6 Sustainable M	aterials Overview	76
5.7 Summary		82
CHAPTER 6:	OPTIMIZING GREEN BRIDGES MATERIAL	
	SELECTION	
6.1 General		83
6.2 Case Study Ov	verview	83
6.2.1 Case D	Description	83
6.3 Single Objecti	ve Optimization Material Selection (SOOMS)	89
6.3.1 Model	Inputs	89
6.3.2 SOOM	IS Model Implementation	90
	IS Model outputs	
	ve Optimization Material Selection MOOMS	
	Inputs	
6.5 MOOMS Mod	lel Outputs	96
	_	
CHAPTER 7:	CONCLUSIONS AND RECOMMENDATIONS	
,	FOR FUTURE WORK	
7.1 Results and Co	onclusions	101
, .1 10501tb und Co	/11 V 10V1V11V	101

7.2 Research Limitations
7.3 Research Contribution
7.4 Recommendations for Future Work
REFERENCES
APPENDICES
APPENDIX (A): PREVIOUS GREEN BUILDINGS EFFORTS
APPENDIX (B): INTERVIEWS SURVEYS & EXPERT
PARTICIPANTS CONTACTS
APPENDIX (C): SUSTAINABILITY SCORE IDENTIFICATION
CALCULATIONS & BEES MATERIALS LIST151
APPENDIX (D): (SOOMS) EVOLOVER LOG OUTPUTS
and (MOOMS), MATLAP CODES AND LOG OUTPUTS 165

LIST OF TABLES

Table No.	Title	Page
Table 2.1:	Embodied Energy and CO2 Levels for Steel	11
Table 2.2:	US Department of Energy-Energy Efficiency and Renewable	
	Energy. Suggested Insulation Types	18
Table 2.3 :	Previous Efforts in Green Buildings Design	21
Table 2.4 :	LEED V.3 Certification Levels	23
Table 2.5 :	GHG Impact Tools	32
Table 2.6 :	Proposed criteria that influence Sustainability of Bridges	
	Projects	36
Table 3.1:	Proposed Credits for Green Bridges Rating System	47
Table 3.2 :	Initial Criteria List	51
Table 3.3 :	Interview (A) Survey Results	57
Table 4.1:	Simo's Normalization Procedure	65
Table 4.2:	Simo's Clusters Weights Estimation	66
Table 4.3 :	Simo's Criteria Global Weights Estimation	67
Table 4.4 :	Categories Estimated Weights	67
Table 4.5 :	Criteria Estimated Weights	68
Table 5.1:	Initial List of Sustainability Dimensions	74
Table 5.2 :	Sustainability Dimensions Material Selection	75
Table 5.3 :	Bridges Materials Sustainability Scores	81
Table 6.1:	Materials Quantities BaniMazar Bridge over the Nile	85
Table 6.2:	SOOMS Total cost Minimization Objective Values	92
Table 6.3 :	SOOMS Sustainability Score Maximization Objective Values	93
Table 6.4 :	MOOMS Terminology	94
Table 6.5 :	MOOMS Category and Material Indices, Costs, and Scores	97
Table 6.6:	MOOMS Pareto Front Values	98

LIST OF FIGURES

Fig. No	•	Title	Page
Fig. 1.1	:	Proposed Research Methodology	7
Fig. 2.1	:	Egyptian Energy Expenses Distribution (Egypt Expenses, 2010)	19
Fig. 2.2	:	A Commercial Building Expenses over Service Life (USA)	20
Fig. 2.3	:	Main Criteria of Green Performance	35
Fig. 2.4	:	Illustration of Pareto front to Maximize multi objective	
		Optimization Problem.	39
Fig. 2.5	:	Illustration of Pareto front for a Minimize Multi Objective	
		Optimization Problem	39
Fig. 3.1	:	Estimated Mean Values of Importance Level for the Final List	
		of Criteria	58
Fig. 3.2	:	Estimated Mean Values Project Requirements Category	58
Fig. 3.3	:	Estimated Mean Values for Environment and Water Category	59
Fig. 3.4	:	Estimated Mean Values for Access and Equity Category	59
Fig. 3.5	:	Estimated Mean Values for Construction Activities Category	60
Fig. 3.6	:	Estimated Mean Values for Materials and Resources Category	60
Fig. 4.1	:	Credit Distribution amongst Bridge Rating System Categories	69
Fig. 4.2	:	Proposed Bridges Rating System Classes	70
Fig. 6.1	:	BaniMazar Bridge Axis Layout	86
Fig. 6.2	:	BaniMazar Bridge over the Nile Sections Plan	87
Fig. 6.3	:	BaniMazar Bridge Longitudinal Profile	88
Fig. 6.4	:	Flow Chart Illustrates Pareto front generation using MATLAP Solver	96
Fig. 6.5	:	MOOMS Pareto Front Optimal Solutions	99

NOMENCLATURE

AASHTO American Association of State Highway and Transportation Officials

ACEC American Council of Engineering Companies

ACPA American Concrete Pavement Association

APWA American Public Works Association

ASCE American Society of Civil Engineers

BEST Building Environmentally and Economically Sustainable Transportation

CARB California Air Resources Board

DOT Department of Transportation

EPA Environmental Protection Agency

FHWA Federal Highway Administration

GDOT Georgia Department of Transportation

GDP Gross Domestic Product

GHP Green Highways Partnership

GSHC T&DI/ASCE 1st Green Streets and Highways Conference

IDOT Illinois Department of Transportation

I-LAST Illinois Livable and Sustainable Transportation

IRTBA Illinois Road and Transportation Builders Association

LCA Life Cycle Assessment

LCCA Life-Cycle Cost Analysis

LEED Leadership in Energy and Environmental Design

MTO Ministry of Transportation (Canada)

OMR Office of Materials and Research (specifically)

PI Principal Investigator

ppm parts per million (air pollution unit

SIPRS Sustainable Infrastructure Project Rating System

STEED Sustainable Transportation Environmental Engineering and Design

SWMs Solid Waste Materials

T&DI Transportation and Development Institute

TRIS Transportation Research Information Service

USGBC Leadership in Energy and Environmental Design Reference Guide for

New Building Construction

CH2M Hill University of Washington

SESC Soil Erosion and Sedimentation Control Measures

SWMP Storm-water Management Plan

NPDES National Pollutant Discharge Elimination System

MDEQ Michigan Department of Environmental Quality

BMP's Approved Best Management Practices

SCM Supplemental Cementitious Materials

NCHRP National Cooperative Highway Research Program

ABSTRACT

Sustainable development principles have been implemented in various sectors including construction. Proper development and operation of infrastructure projects, such as bridges and highways, can contribute significantly to the mission of sustainable development. In this respect, there is little existing work on appropriate methods to assess the sustainability performance of bridges projects. This thesis introduces a keylist of gathered important criteria that affect the sustainability of bridge projects. Various construction industry standards have been reviewed in order to decide the criteria that influence sustainability of bridges' projects. The initial list of criteria has been identified by unstructured interviews. Then, structured interviews surveys have been conducted to identify the final list that is deemed important in rating green bridges. Various construction industry standards have been reviewed to decide on the criteria that influence sustainability of bridges' projects. Final criteria results from this thesis are used to develop a green bridge rating system to achieve sustainable development. Degree of importance and weights of these criteria are determined using Simo's procedure. Five classes of bridges are proposed to judge their status with respect to sustainability, with these being Non-Green, Certified, Green, total Green, and Evergreen. Material selection has been identified as an area where designers and contractors can have a significant impact on the sustainable performance of a bridge. Objective criteria such as design considerations and cost constraints can play a role in the selection of materials. However, there may be subjective criteria that could also impact the selection of materials. As such, an optimization model is developed to help decision makers to select materials. The research proposes a conceptual instrument that measures the user-based assessment of material sustainability and validates decisionmaker's perceptions in order to evaluate the contribution of characteristics in materials selection. Interviews surveys of design and construction experts in sustainability and green practitioners were carried out. The results of the survey reveal that attention should be paid when taking the decision of which material should be used. This decision bears significant environmental, economic, financial, and social influences. Selecting inappropriate materials can be expensive, but more importantly, it may preclude the achievement of the desired environmental goals. The contribution of this research is the development of a framework that consists of two modules for selecting appropriate building materials in order to help decision-makers with the appropriate