

Structural Setting and Reservoir Characterization of Syn-Rift Facies, West Gebel El-Zeit Area, Gulf of Suez, Egypt

A Dissertation Submitted to
Ain Shams University, Faculty of Science,
Geology Department

For the degree of Doctor of Philosophy in **Geology**

BY AHMED ABDEL SATTAR MAYHOUB

B.Sc. in Geology, Cairo University (1987) M.Sc. in Geology, Cairo University (2010)

Approval Sheet

STRUCTURAL SETTING AND RESERVOIR CHARACTERIZATION OF SYN-RIFT FACIES, WEST GEBEL EL-ZEIT AREA, GULF OF SUEZ, EGYPT

BY AHMED ABDEL SATTAR MAYHOUB

B.Sc. in Geology, Cairo University (1987) M.Sc. in Geology, Cairo University (2010)

A Dissertation Submitted

For the Requirements of the Ph.D. Degree in Geology
Geology Department
Faculty of Science
Ain Shams University

<u>Supervisors</u>	<u>Approved</u>
Prof. Dr. Adel R. Moustafa	
Professor of Structural Geology	
Faculty of Science, Ain Shams University	
Dr. Mohamed Yousef Rizk	
Lecturer, Faculty of Science, Ain Shams Un	iversity
Mr. Samir Mohamed Shehata Zala	nt.
Operations Manager, Vegas Oil Company	
	Prof. Dr. Ali Farrag Osman
	Chairman of Geology Departmer

Acknowledgments

First of all words of acknowledgment have to be addressed for the Geology Department, Faculty of Science, Ain Shams University.

I wish to express my sincere appreciation to Prof. Dr. Adel R. Moustafa Professor of structural geology (Faculty of Science, Ain Shams University) for his supervision and guidance on the Ph.D. research and for assistance and encouragement in various phases of this study. My words of gratitude are extended to Dr. Mohamed Yousef, Lecturer of Geology, Faculty of Science, Ain Shams University and to Mr. Samir Zalat (Vegas Oil Comapny).

My special gratitude and thanks go to EREX team and to Mr. Nazih Tewfik for supporting and helping in preparing and finishing this study.

Finally yet importantly, the support and patience of my entire family is gratefully appreciated.

Abstract

Mayhoub, Ahmed Abdel Sattar. Structural Setting and Reservoir Characterization of Syn-Rift, Facies, West Gebel El-Zeit, Gulf of Suez, Egypt. Unpublished Doctor of Philosophy dissertation, Ain Shams University, 2018.

The study area including Al Amir and Geyad oil fields (onshore Northwest Gemsa) is located in west Gebel El Zeit area, covering an area of about 39 km² & 26.4 km², respectively. The study covers the PetroAmir, Geyad and Al Amir concessions and is based on 2D seismic data and nine wells (Shehab-1X, Geyad-2X, Geyad-1X, Al Amir SE-1X and st, Al Amir SE-2X, Al amir SE-3X, Al Amir SE-4X, Al Amir SE-5X and Al Amir SE-6X). The study is aimed to highlight the reservoir characterization and structural configuration of the syn-rift facies.

The study examines the selected nine wells in which the penetrated Miocene stratigraphy from bottom to top section includes; Nukhul, Rudeis, Kareem and Belayim formations. The Nukhul Formation is recorded only in Geyad-2x, Al Amir SE-1x, Al Amir SE-1xSt wells but it is not recorded in other wells due to incomplete drilling. The faults in the study area are dip-slip faults of NW-SE trend. Four major NW-SE trending normal dip-slip faults are picked (F1, F7, F10 and F12). These parallel clysmic faults produce tilted fault blocks with dip direction toward the SW. These clysmic faults dissect all the syn-rift section (from Nukhul to Zeit formations) except F12 which dies out in the Rudeis Formation. F2 and F8 faults are NW-SE trending secondary normal faults with downthrow toward the NE direction (antithetic faults). In addition, there are some cross faults oriented NE-SW, which bound the reservoir blocks.

There are five wells that have cores in the Kareem Formation. The different lithofacies are derived from the study of the sedimentary sequences of Kareem Formation in the five cored wells. These wells are Al Amir-3X St2, Al Amir-4X, Al Amir-5X, Al Amir-6X and Geyad-2X. The study revealed the recognition of four

main facies groups, divided into 13 sub facies. Generally, the cored intervals represents cyclic alternations of hemipelagic sedimentation with dominance of carbonate and mudstone facies interrupted by some debris flow pulses with deposition of massive sandstones and conglomerates (stratified sandstone turbidities). The cored intervals of the five cored wells represent a part of distal submarine lobes in open-deep marine setting. The reduced sand thickness and the dominance of hemipelagic facies indicate the deposition in a distal setting away from the main bounding source. The reservoir units do occur mainly in the main facies (Gm. Sm and Sh).

In the present work the wireline logs, especially Gamma Ray logs are used in the application of the cyclolog® software to build a cyclicity pattern of the nine study wells. The penetrated section is distinguished into six main 3rd order sequence stratigraphic cycles. Cycle 2.4 represents the Kareem Formation of the study interval. The interpreted 2D seismic data, electrical logs from nine wells and core data from five wells were used to construct a 3D static model for the different blocks of Al Amir and Geyad fields. These main fields are subdivided into 2 blocks and the main reservoirs is within the Kareem Formation.

Key words: Gulf of Suez rifts, Al Amir and Geyad oil fields, West Zeit Basin, Cyclicity, cross faults.

List of Abbreviations

Ahnl	Laminated anhydrite
Ahnn	Nodular anhydrite
ВНС	Compensated sonic log
BVW	Block volume water
CALI	CALIPER log
Cl/Cm	Marls
Cm/Cl	Laminated / massive carbonate/marl
CNL	Compensated Neutron log
EMF	Esh El Mellaha Fault
FVF	Formation Volume Factor
Gm	Massive conglomerate
GR	Gamma-ray log
INPEFA	Integrated Predictive Error Filter Analysis
LLD	Dual-Laterolog (deep)
LLS	Dual-Laterolog (shallow)
Ma	Million annum
MD	Measured depths
Ml	Laminated siltstone/Mudstone
Mm	Calcareous Shales
MSFL	Microspherically Focused
NPHI, TNPL, APLC	Neutron porosity
PE	Photo electric log
PEFA	Predictive Error Filter Analysis
PHIE	Effevtive porosity
RBF	Rift boundary fault
RHOB, RHOZ, SBED2	Bulk density
Rmf	Mud filtrate resistivity at formation temperature
Rw	Formation Water Resistivity
Rweq	Equivalent water resistivity
Sgm	Massive pebbly muddy Sandstone
Sh	Stratified Sandstone
	Stratifica Safrastone
Si	Inverse graded Sandstone

Sm1	Massive Sandstone
	Normal graded pebbly Sandstone /
Sm/Gm	Conglomerate

SSP	The static self potential
STOIIP	Static Oil Initial In Palce
Sw	Water Saturation
TD	Total drilling depth
TVDSS	True vertical subsea depth
TVT	True vertical thickness

Log Tacks

Track 1	Represents the Formation name.
Track 2	Contains the GR, SP, CALI logs.
Track 3	Depth track, pay flag (pay zone indicator) and reservoir flag (reservoir zone indicator).
Track 4	Represents the cyclostratigraphic units.
Track 5	Represents the subcyclostratigraphic units.
Track 6	INPEFA cyclicity log patterns.
Track 7	Resistivity logs
Track 8	Neutron, Density and photo electric logs (NPHI, RHOB and PE).
Track 9	Sonic log.
Track 10	Curve of hydrocarbon and water saturation (Sw).
Track11	Effective porosity (PHIE) and bulk volume of water (BVW).
Track12	Volume of lithotypes (sand, shale, limestone, and anhydrite, etc.).

CONTENTS

1.0	INTRODUCTION
	1.1 Generalities
	1.2 Location of the study field areas
	1.3 Aim and scope of the present study
	1.4 Database
	1.5 Previous studies
	1.6 Elements of Petroleum System in the Gulf of Suez Rift Basin
	1.7 Exploration History of the Gulf of Suez Petroleum Province
	1.8 Exploration History of the Study Area
2.0	REGIONAL GEOLOGICAL SETTING
	2.1 Introduction
	2.2. General stratigraphic framework of the Gulf of Suez
	2.1.1 Pre-Rift Sequences
	a. Precambrian Igneous and Metamorphic Rocks
	b. Pre-Cenomanian Clastic-Dominated Sequences
	(Nubian Sandstone Facies)
	c. Upper Cretaceous-Lower Paleogene Mixed Facies
	Sequences
	d. Late Paleogene (Upper Eocene – Oligocene)
	2. 2.2 Syn-Rift Sequences
	a. Gharandal Group (Miocene clastics)
	b. Ras Malaab Group (Evaporite-dominated)
	2.2.3. Post-rift sequences
	2.3. West Zeit (Gemsa) Basin Stratigraphy
	2.3.1 Stratigraphy of Gemsa basin
	a. Prerift Sequence

				PAGE
			b. Synrift Sequence	27 28
	2.4 2.5		Structural Setting of the Gulf of Suez	29 32
3.0			RUCTURAL INTERPRETATION AND GEOLOGICAL	34
			on	34
			overage	35
			Pataset and Synthetic Seismogram	36
	3.4 8	Seismic In	terpretation	40
		3.4.1 I	Picked Seismic Horizons	40
	3.5	Γime and I	Depth Maps	47
		3.5.1	Nukhul Formation Two-way Time and Depth maps,	
		3.3.1	Early rift –Early Aquitanian	47
		3.5.2	Rudeis Formation Two-way Time and Depth maps	48
		3.5.3	Kareem Formation Two-way Time and Depth maps,	40
		3.3.3	Late Langhian	49
		3.5.4	Belayim Formation Two-way Time and Depth maps,	77
		3.3.₹	Serravalian	50
		3.5.5	South Gharib Formation Two-way Time and Depth	30
		3.3.3	maps	50
		3.5.6	Zeit Formation Two-way Time and Depth maps	51
		3.5.7	Length of clysmic and cross faults	57
		3.5.8	Maximum fault throw of clysmic and cross faults	58
		3.3.0	Waximum fault throw of crystine and cross faults	36
	3.6 I	Previous st	tudies and the present assignment	61
			gical modeling	62
		3.7.1	3D Models Coverage	62
		3.7.2	Structural model	63
		3.7.3	Input Data	63
		3.7.4	Property Model	66
			a. Upscaling well logs	67

4.0	STRATIGRAPHIC SETTING OF THE STUDY AREA	PAGE 76
7.0		, -
	4.1 Introduction	76 76
	4.2.1 Shehab-1X	76
	a. Lithostratigraphy	76
	4.2.2 Geyad-2X	77
	a. Lithostratigraphy	78
	4.2.3 Geyad-1X	79
	a. Lithostratigraphy	80
	4.2.4 Geyad-1X ST	80
	a. Lithostratigraphy	81
	4.2.5 Al Amir SE-1X ST	82
	a. Lithostratigraphy	83
	4.2.6 Al Amir SE-2X	83
	a. Lithostratigraphy	83
	4.2.7 Al amir SE-3X	85
	a. Lithostratigraphy	85
	4.2.8 Al Amir SE-3X St2	85
	a. Lithostratigraphy	86
	4.2.9 Al amir SE-4X	87
	a. Lithostratigraphy	88
	4.2.10 Al Amir SE-5X	88

	PAGE
a. Lithostratigraphy	89
4.2.11 Al Amir SE-6X	91
a. Lithostratigraphy	91
4.3 Lithofacies.	92
4.3.1 Isolith Maps	93
	, ,
a. Rudeis Formation	93
a.1 Rudeis Formation isolith map	93
a.2 Rudeis Formation sand isolith map	93
a.3 Rudeis Formation Shale & Silt isolith map	93
a.4 Rudeis Formation carbonate isolith map	94
a.5 Rudeis Formation evaporites isolith map	94
b. Kareem Formation	95
b.1 Kareem Formation isolith map	95
b.2 Kareem Formation sand isolith map	95
b.3 Kareem Formation Shale & Silt isolith map	95
b.4 Kareem Formation carbonate isolith map	95
b.5 Kareem Formation evaporites isolith map	95
c. Belayim Formation	97
c.1 Belayim Formation isochore map	97
c.2 Belayim Formation sand isolith map	97
c.3 Belayim Formation shale & silt isolith map	98
c.4 Belayim Formation carbonate isolith map	98
c.5 Belayim Formation evaporites isolith map	98
4.3.2 Clastic and non Clastic ratios map	99
a. Rudeis Formation	99
a.1 Rudeis Formation clastic ratio map	99
a.2 Rudeis Formation non-clastic ratio map	100
a.3 Rudeis Formation Net to Gross map	100

		PAGE
	a.4 Rudeis Formation sand / shale ratio map	100
	b. Kareem Formation	101
	b.1 Kareem Formation clastic ratio map	101
	b.2 Kareem Formation non-clastic ratio map	101
	b.3 Kareem Formation Net to Gross map	101
	b.4 Kareem Formation sand / shale ratio map	102
	c. Belayim Formation	103
	c.1 Belayim Formation clastic ratio map	103
	c.2 Belayim Formation non-clastic ratio map	103
	c.3 Belayim Formation Net to Gross map	103
	c.4 Belayim Formation sand / shale ratio map	103
	4.4 Stratigraphic correlation lines	104
	4.4.1 A-A' Stratigraphic correlation section	104
	4.4.2 B-B' Stratigraphic correlation section	105
	4.4.3 C-C' Stratigraphic correlation section	106
	4.4.4 D-D' Stratigraphic correlation section	106
	4.4.5 E-E' Stratigraphic correlation section	107
	4.4.6 F-F' Deepest wells Stratigraphic correlation section	114
	4.5 Lithofacies maps	116
	4.5.1 Nukhul Formation	117
	4.5.2 Rudeis Formation	117
	4.5.3 Kareem Formation	117
	4.5.4 Belayim Formation	117
5.0	CYCLOCHRONOSTRATIGRAPHY AND CYCLICITY	
	APPLICATIONS	120
	5.1 Introduction	120 123
	a. Frequency Breaksb. Frequency Depositional Trends	123 123

	PAGE
c. Frequency Patterns	124
5.3 Geological interpretation of prediction error filter analysis (PEFA)	124
5.4. Determination of stratigraphic breaks	125
5.5. The INPEFA curve and its relationship with PEFA	125
5.6 Interpretation of depositional patterns (Nio, 2010)	128
5.7 Cyclolog© and cyclicity applications in the study area, southern dip	
province, Gulf of Suez	132
5.8 Cyclolog application and interpretation in the study area	135
5.9 Cycles classification in the study wells	136
5.9.1 Shehab-1X well	136
5.9.2 Geyad-2X well	137
5.9.3 Geyad-1X St. well	137
5.9.4 Al Amir SE-1X St1 well	137
5.9.5 Al Amir SE-2X well	139
5.9.6 Al Amir-3X St2 well	140
5.9.7 Al Amir-4X well	140
5.9.8 Al Amir-5X well	140
5.9.9 Al Amir-6X well	140
5.10 Correlation profiles	143
5.10.1 Correlation profile A-A'	144
5.10.2 Correlation profile B-B'	144
5.10.3 Correlation profile C-C'	145
5.10.4 Correlation profile D-D'	145
5.10.5 Correlation profile E-E'	146
5.11 Thicknesses distribution and Isochore maps	153
5.11.1 Isochre map of 2.3 cycle	153
5.11.2 Isochre map of 2.4 cycle	153
5.12 Sand/Shale ratio map of cycle 2.4 (Kareem Formation)	154
5.12.1 Sand/Shale ratio map of sub-cycle 2.4a	154
5.12.2 Sand/Shale ratio map of sub-cycle 2.4b	154

		PAGE
6.0	SEDIMENTARY FACIES ANALYSIS AND SANDSTONE	
	DISTRIBUTION	156
	6.1 Facies definition	156
	6.1.1 Environments and Facies	156
	6.1.2 Sources of clastic detritus	157
	6.1.3 Clastic rock classification	159
	6.1.4 Non clastics	160
	6.2 Lithofacies and sedimentary environment	160
	6.2.1 Lithofacies and sedimentary environment of cored	
	intervals Al Amir SE-3X ST2 Well	161
	6.2.2 Lithofacies and sedimentary environment of cored	
	intervals Al Amir SE-4X Well	164
	6.2.3 Lithofacies and sedimentary environment of cored intervals Al Amir SE-5X Well	167
	6.2.4 Lithofacies and sedimentary environment of cored	107
	intervals Al Amir SE-6X Well	170
	6.2.5 Lithofacies and sedimentary environment of cored	170
	intervals Geyad-2X Well	173
	6.3 Tectonic and sedimentation	176
	6.4 Electrofacies, field application	183
	0.1 2.44 0.44 0.54 upp.14411011	100
7.0	WELL LOGGING ANALYSIS AND PETROPHYSICAL EVALUATION	186
	7.1 Introduction	186
	7.2 Methodology and Well Log Data	186
	7.3 Determination of the Formation Water Resistivity (Rw)	187
	7.4 Log Analysis and Petrophysical Interpretation of the Study Wells	188
	7.4.1. Al Amir SE-2X well	188
	7.4.2. Al Amir SE-3XSt2 well	191
	7.4.3. Al Amir SE-4X well	193
	7.4.4. Al Amir SE-5X well	195
	7.4.5. Al Amir SE-6X well	196
	7.4.6. Shehab-1	198
	7.4.7 Geyad-2X well	201
	7.4.8 Geyad-1XSt well	203
	7.4.9. Al Amir SE-1XSt well	204

		PAGE
	7.5 Cyclicty and Petrophysical Distribution Parameters	206
8.0	HYDROCARBONDN ASSESSMENT	218
	8.1 Reservoir characterization	218 227
9.0	SUMMARY AND CONCLUSION	230
	REFERENCES	235