LOW-CARBOHYDRATE VERSUS LOW-FAT DIET COMBINED WITH EXERCISE TRAINING ON BLOOD LIPID PROFILE IN OBESE FEMALES

Thesis
Submitted for Partial Fulfillment of Master Degree in Physical
Therapy

Presented By

Walid Kamal Mohamed Abd El Basset

B.Sc., (2001) in Physical Therapy Department of

Physical Therapy for Cardiovascular / Respiratory Disorder and Geriatrics

Supervisors

Prof. Dr. Nagwa Mohamed Badr

Professor of Physical Therapy Faculty of Physical Therapy Cairo University

Prof. Dr. Aziz Guirguis Aziz

Professor of Physical Therapy Faculty of Physical Therapy Cairo University

Ass. Prof. Dr. Mahmoud Mohamed Mahfouz

Ass. Professor of Internal Medicine Faculty of Medicine, Cairo University

Faculty of Physical Therapy Cairo University 2009

ACKNOWLEDGMENT

First and foremost, I would like to kneel thanking for **ALLAH**, the most beneficial that enabled me to conduct this work, as a part of his generous help throughout life.

I am deeply indebted to **Prof. Dr. Nagwa Mohamed Badr**, Professor of Physical Therapy, Department of Cardiovascular / Respiratory Disorder and geriatrics, Faculty of physical therapy ,Cairo University, for her great support and advice that gave me the confidence and encouragement to start and complete this study as the best as I could do.

I am profoundly grateful to **Prof. Dr. Aziz Guirguis Aziz,** Professor of Physical Therapy, Department of Cardiovascular / Respiratory Disorder and geriatrics, Faculty of physical therapy, Cairo University, for his kind help, constant encouragement, supervision and advice.

I am profoundly grateful to **Prof. Dr. Mahmoud Mohamed Mahfouz,** Assistant professor of internal medicine, Faculty of Medicine,
Cairo University, for his kind help, constant encouragement, supervision and advice.

I am profoundly grateful to **Dr. Sherin Hamed Elsayed**, Assistant Lecturer of Physical Therapy, Department of Cardiovascular/Respiratory Disorder and geriatrics, Faculty of physical therapy, Cairo University, for her constant encouragement and advice.

WITH EXERCISE TRAINING ON BLOOD LIPID PROFILE IN OBESE FEMALES / Walid Kamal Mohamed Abd El Basset.

Department of Cardiovascular/Respiratory Disorder And geriatrics, Faculty of Physical Therapy, Cairo University, 2009, Master thesis. Supervisors: Prof. Dr. Nagwa Mohamed Hamed Badr. Department of Cardiovascular/Respiratory Disorder and geriatrics, Faculty of Physical Therapy, Cairo University. Prof. Dr. Aziz Guirguis Aziz. Department of Cardiovascular/Respiratory Disorder and geriatrics, Faculty of Physical Therapy, Cairo University. Prof. Dr. Mahmoud Mohamed Mahfouz Assistant Professor of Internal Medicine, Faculty of Medicine, Cairo University.

Abstract

Forty five obese females aged 20-32 years are included in the present study. Their BMI ranged between (35 to ≥40). They were classified into three groups each group consists of fifteen subjects, the first group was those on Low-carbohydrate diet (1500 cal/d, 38.7g CHO/d) with aerobic exercise (40 min. walking Ex. 3 times/week), the second was those on Low-fat diet (1500 cal/d, 16.9g fat/d) with the same aerobics and the third group was those on aerobic exercise only (control group). The biochemical changes in serum (total cholesterol, TG, LDLs and HDLs) were measured at the beginning of the study and after twelve weeks. The results showed that low-carbohydrate diet had greater effect to decrease in serum triglycerides (-18.1mg/dL; P<0.05 vs. -6.1 mg/dL; P>0.05) and greater increase in HDLs (+3.431mg/dL; P<0.05 vs. +1.93 mg/dL; P>0.05) when compared with low-fat diet. Changes of Total cholesterol and LDLs levels did not differ statistically between the three groups (P<0.05).

Key words; (Low-carbohydrate, Low-fat, BMI, Cholesterol, Triglyceride, LDLs, HDLs).

Contents

Subject	Page
List of tables	I
List of figures	II
List of abbreviations	IV
Definition of terms	VI
Introduction	1
Statement of the problem	6
Purpose of the study	6
Significance of the study	6
Hypothesis	7
Literature review	8
Definition of Obesity	8
Health risks of Obesity and Mortality	13
Morbidity	13
Causes of Obesity	15
The Dyslipidemia of Obesity	22
Pathophysiology of the Dyslipidemia of obesity	28
Pathogenesis of the Dyslipidemia of obesity	30
Lipid Profile	37
Management of Obesity and Dyslipidemia	41
Dietary therapy of Obesity and Dyslipidemia	42
Complications of Low Carbohydrate Diet	51
Complications of Low Fat Diet	54

Subject	Page
Exercise & Physical activity	55
Weight loss programs	57
Medical Treatment of Obesity	57
Surgical Treatment of Obesity	59
Medical Treatment of Dyslipidemia	61
Subjects, Materials and Methods	66
Subjects	66
Materials	67
Procedures	67
Statistical Analysis	71
Results	72
Discussion	89
Summary, Conclusion & Recommendations	101
References	105
Appendices	128
Appendix (A)	128
Appendix (B)	130
Appendix (C)	131
Appendix (D)	134
Arabic summary	136

List of tables	Page
Table (1): Classification of under- and overweight in adults	11
according to BMI.	
Table (2): Optimal, Borderline and High Levels of lipid	40
profile For Each Component.	
Table (3): shows the mean, SD Maximum and Minimum of	74
the age, weight, height and BMI of the 2 different groups.	
Table (4): Total Cholesterol (TC) between group (A), group	77
(B) and group (C) before and after the program.	
Table (5): Triglyceride (TG) between group (A), group (B)	80
and group (C) before and after the program	
Table (6): High Density Lipoprotein (HDL) between group	83
(A), group (B) and group (C) before and after the program.	
Table (7): Low Density Lipoprotein (LDL) between group	86
(A), group (B) and group (C) before and after the program.	

List of Figures	Page
Figure (1): Metabolism of fasting and postprandial	29
(TRLs) Triglyceride-Rich Lipoproteins	
Figure (2): HDL metabolism.	30
Figure (3): Pathogenesis of dyslipidemia in obesity.	31
Figure (4): Weight & height scale: (Healthy scale 160 kg).	70
Figure (5): Body fat monitor "Omron BF 302".	70
Figure (6): Treadmill (Deluxe motorized treadmill	71
3HRC, for walking exercise program).	
Figure (7): Shows the mean, SD Maximum and Minimum	75
of the age, weight, height and BMI of the 2 different groups.	
Figure (8): Statistical analysis for Total Cholesterol	78
(TC) between group (A), group (B) and group (C) before	
and after the program.	
Figure (9): Show the percentage of change of Total	79
Cholesterol (TC) for Group A, B and C.	
Figure (10): Statistical analysis for Triglyceride (TG)	81
between group (A), group (B) and group (C) before and	
after the program.	
Figure (11): Show the percentage of change of	82
Triglyceride (TG) for Group A, B, and C.	
Figure (12): Statistical analysis for High Density	84
Lipoprotein (HDL) between group (A), group (B) and	
group (C) before and after the program.	
Figure (13): Show the percentage of change of High	85
Density Lipoprotein (HDL) for Group A, B and C.	

List of Figures	Page
Figure (14): Statistical analysis for Low Density	87
Lipoprotein (LDL) between group (A), group (B) and	
group (C) before and after the program.	
Figure (15): Show the percentage of change of Low	88
Density Lipoprotein (LDL) for Group A, B and C.	

List of Abbreviations

AACE: American Association of Clinical Endocrinologists

AHA: American Heart Association

BMI: Body Mass Index

BMR: Basal Metabolic Rate

CETP: Cholesterol Ester Transfer Protein

CHol: Cholesterol

CHD: Coronary Heart Disease

CT: Computed Tomography

CVD: Cardiovascular Disease

DEXA: Dual Energy X-Ray Absorptiometry

FDA: Food and Drug Administration

HDLs: High Density Lipoproteins

HERITAGE: The Health, Risk Factors, Exercise, Training and Genetics

HL: Hepatic Lipase

HMG: Hydroxy-3- Methyl Glutaryl

HPTG: Hypertriglyceridemia

HSP-70: The Heat Shock Protein 70

HSPGs: Heparan Sulfate Proteoglycans

IDLs: Intermediate Density Lipoproteins

IMNA: Institute of Medicine of the National Academies

LCAT: Lecithin: Cholesterol Acyl Transferase

LDLs: Low Density Lipoproteins

LoCHO D: Low-Carbohydrate Diets

LPL: Lipoprotein Lipase

MRI: Magnetic Resonance Imaging

MTP: Microsomal Triglyceride Protein

MUFAs: Monounsaturated Fatty Acids

NCEP: National Cholesterol Education Program

NEFA: Non Esterified Fatty Acids

NEJM: National England Journal Of Medicine

NHANES: National Health and Nutrition Examination Survey

NIH: National Institute Of Health

RER: The Rough Endoplasmic Reticulum

SER: The Smooth Endoplasmic Reticulum

SR-BI: Scavenger Receptor Class B, Type I

TG: Triglyceride

TNF: Tumor Necrosis Factor

TRLs: Triglyceride-Rich Lipoproteins

USPSTF: US Preventive Services Task Force

VLDLs: Very Low Density Lipoproteins

WHOs: World Health Organizations

WIN: Weight-Control Information Network

Definitions of Terms

Cardiovascular disease (CVD): Any abnormal condition characterized by dysfunction of the heart and blood vessels. CVD includes atherosclerosis (especially coronary heart disease, which can lead to heart attacks), cerebrovascular disease (e.g., stroke), and hypertension (high blood pressure).

Cholesterol: A soft, waxy substance manufactured by the body and used in the production of hormones, bile acid, and vitamin D and present in all parts of the body, including the nervous system, muscle, skin, liver, intestines, and heart. Blood cholesterol circulates in the bloodstream. Dietary cholesterol is found in foods of animal origin.

Computed tomography (CT) scans: A radiographic technique for direct visualization and quantification of fat that offers high image contrast and clear separation of fat from other soft tissues. CT can estimate total body adipose tissue volume and identify regional, subcutaneous, visceral, and other adipose tissue depots. Radiation exposure, expense, and unavailability restrict the epidemiologic use of CT.

Dyslipidemia: disorders in the lipoprotein metabolism; classified as hypercholesterolemia, hypertriglyceridemia, combined hyperlipidemia, and low levels of high-density lipoprotein (HDL) cholesterol. All of the dyslipidemia can be primary or secondary. Both elevated levels of low-density lipoprotein (LDL) cholesterol and low levels of HDL cholesterol predispose to premature atherosclerosis.

Energy balance: Energy is the capacity of a body or a physical system for doing work. Energy balance is the state in which the total energy intake equals total energy needs.

High – **density lipoproteins** (**HDL**): Lipoproteins that contain a small amount of cholesterol and carry cholesterol away from body cells and tissues to the liver of excretion form the body. Low-level HDL increases the risk of heart disease, so the higher the HDL level, the better. The HDL component normally contains 20 to 30 percent of total cholesterol, and HDL levels are inversely correlated with coronary heart disease risk.

Hypercholesterolemia (high blood cholesterol): Cholesterol is the most abundant steroid in animal tissues, especially in bile and gallstones. The relationship between the intake of cholesterol and its manufacture by the body to its utilization, sequestration, or excretion from the body is called the cholesterol balance. When cholesterol accumulates, the balance is positive; when it declines, the balance is negative.

Hypertriglyceridemia: An excess of triglycerides in the blood (between 400 and 1.000 mg/dL), that is an auto somal dominant disorder with the phenotype of hyper lipoproteinemia, type IV.

Lipoprotein: Protein-coated packages that carry fat and cholesterol throughout the bloodstream. There are four general classes: high-density, low-density, very low-density, and chylomicrons.

Low-density lipoprotein (**LDL**): Lipoprotein that contains most of the cholesterol in the blood. LDL carries cholesterol to the tissues of the body, including the arteries. A high level of LDL increases the risk of heart disease. LDL typically contains 60 to 70 percent of the total serum cholesterol and both are directly correlated with CHD risk.

Macronutrients: Mutants in the diet that are the key sources of energy, namely protein, fat, and carbohydrates.

Magnetic resonance imaging (MRI): Magnetic resonance imaging uses radio frequency waves to provide direct visualization and quantification of fat. The shapriame contrast of MRI allows clear separation of adipose tissue from surrounding no lipid structures. Essentially the same information provided by CT is available from MRI, including total body and regional adipose tissue, subcutaneous adipose, and estimates of various visceral adipose tissue components.

Meta-analysis: process of using statistical methods to combine the results of different studies. A frequent application is pooling the results from asset of randomized controlled trials, none of which alone is powerful enough to demonstrate statistical significance.

Monounsaturated fat: An unsaturated fat that is found primarily in plant foods, including olive and canola oils.

Polyunsaturated fat: An unsaturated fat found in greatest amounts in foods derived from plants, including safflower, sunflower, corn, and soybean oils.

Saturated fat: A type of fat found in greatest amounts in foods from animals, such as fatty cuts of meat, poultry with the skin, whole-milk dairy products, lard, and in some vegetable oils, including coconut, palm kernel, and palm oils. Saturated fat raises blood cholesterol more than anything else eaten.

Sleep apnea: A serious, potentially life-threatening breathing due to either collapse of the upper airway during sleep or absence of respiratory effort.

Triglyceride: A lipid carried through the bloodstream to tissues. Most of the body's fat tissue is in the form of triglycerides, stored for use as energy. Triglycerides are obtained primarily from fat in foods.

Very low-density lipoprotein (VLDL): The lipoprotein particles that initially leave the liver, carrying cholesterol and lipid. VLDLs contain 10 to 15 percent of the total serum cholesterol along with most of the triglycerides in the fasting serum; VLDLs are precursors of LDL, and some forms of VLDL, particularly VLDL remnants, appear to be atherogenic (National institute of Health, 2000).

List of tables	Page
Table (1): Classification of under- and overweight in adults	11
according to BMI.	
Table (2): Optimal, Borderline and High Levels of lipid	40
profile For Each Component.	
Table (3): shows the mean, SD Maximum and Minimum of	74
the age, weight, height and BMI of the 2 different groups.	
Table (4): Total Cholesterol (TC) between group (A), group	77
(B) and group (C) before and after the program.	
Table (5): Triglyceride (TG) between group (A), group (B)	80
and group (C) before and after the program	
Table (6): High Density Lipoprotein (HDL) between group	83
(A), group (B) and group (C) before and after the program.	
Table (7): Low Density Lipoprotein (LDL) between group	86
(A), group (B) and group (C) before and after the program.	