# APPLYING SIGNALING METRICS IN EVALUATING AND MODELING PSTN AND PLMN NETWORKS PERFORMANCE

#### Thesis

For partial fulfillment of Master degree in *Electrical* Engineering

By
Khalid Youssef Youssef Kamel
B.Sc.E. 

Y . . .

## Supervised By

## Prof. Dr. Abd El-Halim Abd El-Nabi Zekry

Professor of electronics and communications Faculty of Engineering, Ain Shams University

#### Prof. Dr. Mohammed El Sabaa

Professor of electronics and communications Faculty of Engineering, Ain Shams University



Faculty of Engineering
Ain Shams University

Y...

## نمذجة شبكات المحمول خلال متغيرات سلوك الشبكة

رسالة بحث للحصول علي درجة الماجيستير في الهندسة الكهربية

مقدمة من خالد يوسف كامل بكالوريوس هندسة, جامعة عين شمس

تحت اشراف أ.د/ عبد الحليم عبد النبي ذكري

استاذ الأكترونيات و الأتصالات كلية الهندسة-جامعة عين شمس

أ.د/ محمد السبع

استاذ الأكترونيات و الأتصالات كلية الهندسة- جامعة عين شمس

كلية الهندسة جامعة عين شمس ٢٠٠٧

# بسم الله الرحمن الرحيم قالم سبحانك لا علم لنا إلا ما علمتنا إنك أنبص العليم الحكيم صدق الله العظيم

الأية(٣٢) سورة البقرة

## Acknowledgment

In every phase of this study, many people supported me with many suggestions and words of encouragement. I would never be able to accomplish this task without these people.

I would like to express sincere gratitude to the thesis supervisor, Prof. Dr. Abdulhalim Abdulnabi Zekri, for his constructive criticism and ceaseless advice, his way of research and science understanding adds to me a lot. Really, I am feeling privileged being one of his students.

My sincere thanks are due to Prof. Dr. Mohamed El Sabaa for his helpful guidance and kind support to start the thesis work and formulate the subject of research.

Special thanks to Dr. Bahnasi Nosseir, NTI Communications, for his suggestions in the choice of the research subject.

Moreover, my indeed thanks is to Tektronix, USA team for their guidance and practical support to finalize the practical part of my studies.

Last but not least, I am indebted to my father, who teaches me the ethics of research, and my mother, who inspires me the motivation of work.

## LIST OF FIGURES

| FIGURE \ ETEROGENOUS \( \tilde{G} \) NETWORK GLOBAL VIEW                                        | ٠٢  |
|-------------------------------------------------------------------------------------------------|-----|
| FIGURE Y COMPARISON BETWEEN EXPECTED AND                                                        |     |
| PERCEIVEDQOS                                                                                    |     |
| Figure $^{m{\gamma}}$ illustration of the difference between different quality levels           | ٠,٨ |
| FIGURE & SIGNALING SYSTEM NO. V NETWORK ARCHITECTURE                                            | ۱٩  |
| Figure ° general format of ss <sup>V</sup> msu                                                  | ۲١  |
| FIGURE <sup>7</sup> SS <sup>V</sup> AND SIGTRAN COMPOSITE PROTOCOL STACK                        |     |
| FIGURE Y GSM NETWORK ARCHITECTURE DIAGRAM                                                       | ٣٢  |
| FIGURE <sup>A</sup> UMTS NETWORK ARCHITECTURE                                                   | ٣0  |
| FIGURE <sup>9</sup> IMS ARCHITECTURE DIAGRAM                                                    |     |
| FIGURE 1 • FLOW CHART DESCRIBES THE METHODOLOGY OF KPI DEVELOPMENT                              | ٥١  |
| FIGURE 11 KPI FORMULATION FROM DATA SOURCE ELEMENTS                                             | 01  |
| FIGURE 17 LIFE CYCLE OF                                                                         |     |
| KPIDEVELOPMENT                                                                                  |     |
| FIGURE 'TSIGNALING FLOW DIAGRAM ON UMTS IUB INTERFACE                                           | ٥٦  |
| FIGURE \ \ \ \ \ \ \ METRICS MEASUREMENT CYCLE                                                  | ۲۲  |
| FIGURE \ OTEKTRONIX GEOPROBE MONITORING SYSTEM ARCHITECTURE                                     |     |
| FIGURE 17 POI GATEWAY MODEL DIAGRAM                                                             | ٦٨  |
| FIGURE YY SUBSIDIARY TOTAL TRAFFIC PROFILE DURING A DAY                                         | ۸١  |
| FIGURE \\^ SUBSIDIARY SUBS\\ SETUP TIME PROFILE DURING\\ DAYS                                   | ۸١  |
| FIGURE \ 9 SUBSIDIARY SUBS \ AVERAGE CONVERSATION TIME FOR \ 9 DAYS                             | ۸١  |
| FIGURE Y · SUBSIDIARY SUBS Y TOTAL TRAFFIC PROFILE                                              | ٨٢  |
| FIGURE Y SUBSIDIARY SUBSY AVERAGE SETUP TIME DURING A DAY                                       |     |
| FIGURE YYSUBSIDIARY SUBSY AVERAGE CONVERSATION TIME FOR 9 DAYS                                  | ٨٢  |
| FIGURE Y SUBSIDIARY SUBS TOTAL TRAFFIC PROFILE                                                  | ۸٣  |
| FIGURE <sup>Y &amp;</sup> SUBSIDIARY SUBS <sup>W</sup> AVERAGE SETUP TIME FOR <sup>9</sup> DAYS | ۸٣  |
| FIGURE YO SUBSY AVERAGE CONVERSATION TIME FOR 9 DAYS                                            | ۸٣  |
| FIGURE Y7 SUBSIDIARY SUBS £ TOTAL TRAFFIC PROFILE                                               | ٨٤  |
| FIGURE YV SUBSIDIARY SUBS & AVERAGE CALL SETUP TIME FOR 9 DAYS                                  | ٨٤  |
| FIGURE YA SUBSIDIARY SUBS & AVERAGE CONVERSATION TIME FOR 9 DAYS                                | ٨٤  |

| Figure $^{\intercal \mathfrak{q}}$ failure release causes distribution due to network                 | ۰۰۰۰۰ ۸۵ |
|-------------------------------------------------------------------------------------------------------|----------|
| Figure $^{m{	au}}$ $^{m{	au}}$ total call attempt classification according to release causi           | ES ۸۵    |
| Figure $^{	extsf{r}_1}$ call trace traffic capture for configuration problems $$                      | ٠٠٠. ١٠٠ |
| Figure $^{	au\gamma}$ driil down call trace traffic capture for switch congestion .                   | ٠٠٠. ١٠٠ |
| Figure $^{	au	au}$ call trace traffic capture for gateway capacity problems                           | ٠٠٠١     |
| FIGURE $^{r\xi}$ CALL TRACE TRAFFIC CAPTURE FOR DEST NETWORK CAPACITY PROBLE                          | MS 1.1   |
| Figure $^{m{	au_o}}$ total call attempt classification due to release causes                          | ۱۱۸      |
| Figure $^{ m 	au	au}$ Call failure/drop classification according to release causes                    | s ۱۱۸    |
| Figure $^{	auee}$ Call failure/drop profile due to network causes                                     | ۱۱۸      |
| Figure $^{	au_{\!\!A}}$ Distribution of answered calls over ringing time                              | 119      |
| Figure $^{	extsf{rq}}$ Traffic profile for calls answered after one ring alerting                     | ۱۱۹      |
| Figure ${}^{\xi}$ • Traffic profile for calls answered after two ring alerting                        | 119      |
| Figure $\S$ ) Traffic profile for calls answered after three ring alerting                            | ۱۲۰      |
| FIGURE 5 Y VOICE SWITCH LOADING PROFILE                                                               | ٠٠٠٠ ١٢٠ |
| Figure ${}^{\xi}{}^{	au}$ Distribution of intended non-answered ringing over time $$                  | ٠٠٠٠ ٢٠  |
| Figure $^{\xi\xi}$ Short calls profile over cell $^{\gamma\cdot\gamma\eta}$ (Cell Under Test)         | ۱۲۱      |
| FIGURE <sup>¿</sup> O AVERAGE SETUP TIME FOR MT CALLS                                                 | ۱۲۱      |
| FIGURE <sup>£</sup> 7 AVERAGE SETUP TIME FOR MT CALLS                                                 | ۱۲۱      |
| Figure ${}^{\mbox{\ensuremath{\xi}V}}$ Ringing timer expiry traffic profile                           | ۱۲۲      |
| Figure ${}^{\xi}$ AProfile of Successful Handover attempts for cell under test                        | 177      |
| Figure ${}^{\xi 9}$ Radio Channel request profile for cell under test                                 | ۱۲۲      |
| Figure $^{\circ}$ $^{\circ}$ Traffic profile for calls that are not answered and take one ring aler   |          |
|                                                                                                       |          |
| Figure $^{\circ}$ $^{\dagger}$ Traffic profile for calls that are not answered and take two ring aler |          |
|                                                                                                       |          |
| Figure $^{\circ}$ $^{\dagger}$ Traffic profile for calls that are not answered before three ring aler |          |
|                                                                                                       | 1 1 1    |

## LIST OF TABLES

| ه أحد يد حد الله الله الله الله الله الله الله الل                                |    |
|-----------------------------------------------------------------------------------|----|
| Table   Definition List of Network Performance Indicators علناً! الإشارة المرجعية | خد |
| غير معرّفة.                                                                       |    |
| لما! الإشارة المرجعية غير معرّفة Table Y Definition of SSY ISUP MESSAGES          | خد |
| Table " Network Performance Metrics Quantification formulas עוֹ! الإشارة          | خد |
| المرجعية غير معرّفة.                                                              |    |
| TABLE & SUBSIDIARY POI KEY PERFORMANCE INDICATORS STATISTICAL RESULTS !           | خد |
| الاشارة المرجعية غير معرّفة.                                                      |    |
| طا! الإشارة المرجعية غير معرّفة.                                                  | خد |
| لماناً! الإشارة المرجعية غير معرّفة Table 7 Trunks sizing values for POI Gateway  |    |
| TABLE V LIST OF DEFINITIONS OF PERFORMANCE METRICS عنا! الإشارة المرجعية غير      |    |
| مع فة.                                                                            |    |
| TABLE A LIST OF EXTRACTED BSSAP SIGNALING MESSAGES . يناً! الإشارة المرجعية غير   | خد |
| مع فة                                                                             |    |
| عاً! الإشارة Table ٩ List of Performance metrics Quantification formulas          | خد |
| المرجعية غير مع فة.                                                               |    |
|                                                                                   |    |
| لماً! الإشارة المرجعية غير معرّفة TABLE ١٠ LIST OF STATISTICAL RESULTS            |    |
| TABLE \ \ DISTRIBUTION OF FAILURE PERCENTAGE OVER NETWORK RELEASE CAUSES ! L      | خد |
| الاشارة المرجعية غير معرفة                                                        |    |

#### LIST OF ABBREVIATION

A

AAL ATM Adaptation Layer

ANSI American National Standardization Institute

AMPS American Mobile Paging System
ACM Address Complete Message
ASR Answer Seizure Ratio
ACSR Average Call Seizure Rate

ANM Answer Message

ACC Address Complete to Calls ratio

AFCS Average Failed Calls due to Subscribers
AFCN Average Failed Calls due to Network
ALOC Average Length Of Conversation
ACP Assignment Complete message
AIN Advanced Intelligent Network

ARQ Assignment Request ACP Assignment Complete

В

BHPT Busy Hour Peak Traffic
BHCA Busy Hour Call Attempt
BSS Base Station Subsystem
BSC Base Station Controller
BSSAP BSS Application Part

BSSMAP BSS Mobile Application Part

 $\mathbf{C}$ 

CCS Centum Call Seconds
CPS Calls per Second
CC Call Control

CMC Cipher Mode Command message
CR Connection Request message
CLU Class mark Update message
CMCP Cipher Mode complete message

CLR Clear message

CCP Clear Complete message CAP CAMEL Application Part

CAMEL Customized Application Mobile Enhanced Logic

CDMA Code Division Multiple Access

CRNC Controlling Radio Network Controller

CIC Circuit Identification Code

CS-\ Capability Set

D

DTAP Direct Transfer Application Part

DPP Daily Peak Period DPC Destination Point Code

DAMPS Digital Advanced Mobile Phone System

 $\mathbf{E}$ 

EDGE Enhanced Data for GSM Evolution

ETSI European Telecommunications Standards Institute

F

FDMI Fixed Daily Measurement Interval

 $\mathbf{G}$ 

GoS Grade of Service

GSM Global System for Mobile Communications

GPRS General Packet Radio Services\

Η

HDRE Handover Required Message
HDCP Handover Complete Message
HSCSD High Speed Circuit Switching Data
HSDPA High Speed Downlink Packet Access
HSUPA High Speed Uplink Packet Access

HSS Home Subscriber Server

I

ITU International Telecommunications Union

ISUP ISDN User Part

INAP Intelligent Network Application Part

IN Intelligent Network

IMSI International Mobile Subscriber Identity

IP Internet Protocol

IETF Internet Engineering Task Forces
ISDN Integrated Services Digital Network

IMT International Mobile Telecommunications

IMS IP Multimedia Subsystem

IMEI International Mobile Equipment Identifier

IMPI IP multimedia Private Identity
 IMPU IP multimedia Public Identity
 IAM Initiation Address Message
 IDR Identity Request message
 IR Identity Response message

K

KPI Key Performance Indicator

 $\mathbf{L}$   $\mathbf{L}$ 

LCD Lost Calls Delayed
LCC Lost Calls Cleared
LCR Lost Calls Retried
LCH Lost Calls Held

LAPD Link Access Protocol for D-channel

LNP Local Number Portability

M

MOMobile OriginatingMTMobile TerminatingMTPMessage Transfer Part

MMS Multimedia Message Service MGCP Media Gateway Control Protocol

MM Mobility Management
MOS Mean Opinion Score
MAP Mobile Application part
MSC Mobile Switching Centre
MSU Message Signal Unit

N

NBAP Node B Application Part NSS Network Subsystem NGN Next Generation Network

NADC North America Digital Communications

NER Network Effectiveness Ratio NPM Network Performance Metrics

 $\mathbf{o}$ 

OMC Operation Management Centre
O&M Operation and Maintenance
OPC Originating Point Code
OSS Operation Subsystem

P

PCM Pulse Code Modulation
PLMN Public Land Mobile Network

PSTN Public Switching Telephone Network

POTS Plain Old Telephone System

PHS Personal Handy phone System (Japan)
PDC Personal Digital Cellular (Japan)

POI Point Of Interconnection

Q

QoS Quality of Service

R

RFC Request for Comments

RR Radio Resources

RNC Radio Network Controller

RF Radio Frequency

REL Release

RLC Release Complete

S

SSN Subsystem Number SSP Signaling Switch Point

SCCP Signaling Connection Control Protocol

SCP Signaling Control Point

SCTP Stream Control Transmission Protocol

SIGTRAN SIGnaling TRANsport protocol SIP Session Initiation Protocol

SGCP Simple Gateway Control Protocol

SNR Signal to Noise Ratio SP Signaling Point

SLF Subscriber Location Function SVC Switched Virtual Circuit SLA Service Level Agreement SMS Short Message Service

 $\mathbf{T}$ 

TDM Time Division Multiplexing
TDMA Time Division Multiple Access

TCAP Transaction Capability Application Protocol
TACS Total Access Communications System
TMSI Temporary Mobile Subscriber Identity

U

URI Uniform Resources Indicator URL Uniform Resources Locator

UMTS Universal Mobile Telecommunications System

USDC United States Digital Communications

UPI User Payload Identifier

 $\mathbf{V}$ 

VCI Virtual Circuit Identifier VPI Virtual Path Identifier

VoIP Voice over IP

W

W-CDMA Wideband CDMA

W-LAN Wireless Local Area Network

## **ABSTRACT**

In this thesis, a method to analyze telecommunications networks performance on the basis of signaling networks parameters extraction has been introduced. Networks performance metrics are calculated from direct measurement of signaling parameters. The available measurements are divided into variable sets describing the performance of the different subsystems of the GSM and PSTN networks. The model parameters are estimated from the available data records using simple quantification methods. Simple mathematical models for the subsystems are proposed.

The parameter estimates are used to find the input-output variable pairs involved in the most severe performance degradations. Finally, the methodology is applied on two case studies, as a sample from PSTN and PLMN networks.

## **APPENDICES**