

A NEW ANALYTICAL MODEL FOR A GRADED-BASE SINGLE QUANTUM WELL TRANSISTOR LASER

By

Mostafa Radwan Hassan Abdelhamid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

A NEW ANALYTICAL MODEL FOR A GRADED-BASE SINGLE QUANTUM WELL TRANSISTOR LASER

By

Mostafa Radwan Hassan Abdelhamid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Under the Supervision of

Prof. Nadia Hussein Rafat

Professor

Engineering Mathematics and Physics

Department

Faculty of Engineering, Cairo University

A NEW ANALYTICAL MODEL FOR A GRADED-BASE SINGLE QUANTUM WELL TRANSISTOR LASER

By

Mostafa Radwan Hassan Abdelhamid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Approved by the Examining Committee:
Prof. Nadia Hussein Rafat, Thesis Main Advisor
Prof. Hossam A. H. Fahmy, Internal Examiner
Prof. Moustafa Hussein Aly, External Examiner (Arab Academy for Science, Technology and Maritime Transport Alexandria)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer's Name: Mostafa Radwan Hassan Abdelhamid

Date of Birth: 26/03/1990 **Nationality:** Egyptian

E-mail: mostafa.radwan26@gmail.com

Phone: 01060576619

Address: Engineering Mathematics and Physics

Department, Cairo University,

Giza 12613, Egypt

Registration Date: 15/04/2014 **Awarding Date:**/..../

Degree: Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Nadia Hussein Rafat

Examiners:

Prof. Nadia Hussein Rafat (Thesis Main Advisor)
Prof. Hossam A. H. Fahmy (Internal Examiner)
Prof. Moustafa Hussein Aly (External Examiner)
(Arab Academy for

Science, Technology

and Maritime

Transport Alexandria)

Title of Thesis:

A New Analytical Model for a Graded-Base Single Quantum Well Transistor Laser

Key Words:

Transistor Laser; Quantum-Well; Optoelectronics; modeling; composition grading

Summary:

The Transistor Laser (TL) device has shown great potential for the use in optical communications in the near future with its superiority in performance to the regularly used Laser Diodes (LDs). In our work, we have derived a closed-form analytical model for a Single Quantum-Well (QW) Transistor Laser (TL) device. The model incorporates the effect of thermionic-emission and tunneling at the abrupt emitter-base junction as a boundary condition for the continuity equation of the minority carriers in the base region. By combining the continuity equation with a virtual state based two-level rate equations, a complete analytical solution is obtained. The model results show good agreement with previously published experimental data. Thus, we have extended the model to investigate the effect of composition grading in the base region on the device performance. Our model shows that a lower threshold current and a higher optical bandwidth can be achieved with proper grading. A parametric study was also conducted on the proposed model to investigate the effect of different design parameters on the overall performance of the transistor laser.

Acknowledgments

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions.

First of all, I must express my deepest gratitude to my family. I wouldn't have come this far without my parents support and encouragement. They have always motivated me towards making a difference in this world and have been such an incentive for me to work towards being a better person everyday.

I am also very indebted to my advisor Dr. Nadia Rafat. From our first day at the department, Dr. Nadia has always treated us as if we were her own children. She has supported us in numerous occasions in the department and has offered her ongoing help on both the technical and the personal issues that have faced us. Dr. Nadia has influenced me a lot technically with her guidance and her never ending motivation to work on my masters and on my teaching load. She always pushed me towards being a better researcher, better teaching assistant, and eventually a better person. Dr. Nadia has also encouraged me a lot to apply for a PhD scholarship and has helped me a lot during the admission cycle. Her belief and encouragement truly pushes me to achieve my true potential and drives me to be very ambitious and optimistic.

I would also like to thank Dr. Yasser el Batawy who has really been more of an older brother to me. His office is always the place to go to chat about the future and to seek a friendly advice. He has also supported me a lot during admissions.

Last but not least, I must express many thanks to my friends and fellow TAs. My twin brother Mohamed, Karim Moataz, Mohamed Kamel, Mohamed Ibrahim, and Mahmoud el-Sheikh have always been there for me showing their help and support. Also, my fellow TAs in the department: Hessiun, Marina, Amr, Yehia, Esraa, Mostafa Abdallah, Ayyad who have made my days as a TA in the department much more enjoyable and have aided me a lot throughout those past three years.

Special thanks also to Ahmed Reda for always being my companion in the department and for making this experience much more funnier. He has also provided useful technical insights and has helped me in solving technical issues that faced me from the simulators and the tools used during the thesis work

Mostafa R. Abdelhamid

To my family and all my friends

Table of Contents

A	cknow	ledgme	ents			i
Tε	able of	f Conte	nts			V
Li	st of l	Figures				ix
Li	st of S	Symbols	S			xi
Li	st of A	Acronyı	ns		Xi	iii
Al	bstrac	et			y	ΚV
1	Intr	oductio	n			1
	1.1	Motiva	ation			1
	1.2	The Ti	ansistor L	aser		2
		1.2.1	Historica	al Background		2
		1.2.2	Basic Op	perating Principle		3
	1.3	Thesis	Objective			5
	1.4	Thesis	structure		•	6
2	Lite	rature]	Review			7
	2.1	Model	ing of HB	Ts and Graded-base HBTs		7
		2.1.1	Modeling	g of HBTs		8
			2.1.1.1	Grinberg, Shur, Fischer et al. Model	. 1	10
			2.1.1.2	Yang, East and Haddad Model	. 1	13
		2.1.2	Modeling	g of Graded-base HBTs	. 1	15
	2.2	Model	ing of Ligh	ht Emitting Devices and Lasers	. 1	19
		2.2.1	Laser Ra	te Equations	. 1	19
		2.2.2	Modifica	ations to Laser Rate Equations	. 2	26
			2.2.2.1	Two-Level Rate Equations	. 2	27

			2.2.2.2 Three-Level Rate Equations	29
	2.3	The Ti	ransistor Laser: Evolution, Characterization and Modeling	30
		2.3.1	TL Evolution	31
		2.3.2	TL Characterization	33
			2.3.2.1 Current Gain Compression	34
			2.3.2.2 Carrier Profile in The Base Region	36
		2.3.3	TL modeling	37
3	Mod	leling	of Non-Graded and Graded Base Single Quantum Well	
	Trai	nsistor l	Laser	41
	3.1	Model	of Non-Graded Base TL	42
		3.1.1	DC Analysis	44
		3.1.2	Above threshold (Lasing) operation	46
		3.1.3	Below threshold operation	47
		3.1.4	Using Yang, East and Haddad Model	48
	3.2	Model	with Base Grading	53
		3.2.1	DC Analysis	54
		3.2.2	Above Threshold (Lasing) Operation	57
		3.2.3	Below Threshold Operation	58
	3.3	Small-	-Signal Analysis	58
4	Mod	lel Veri	fication and A Parametric Study	63
	4.1	Non-C	Graded Base Model	63
		4.1.1	Model Verification	63
		4.1.2	Parametric Study on the Effect of the QW Location	66
	4.2	Grade	d-Base Model Results and Calculations	68
	4.3	Small-	-Signal Model Results	71
5	Con	clusion	and Future Work	75
	5.1	Summ	nary of Research	75
	5.2	Thesis	Contribution	75
	5.3	Future	Work	76
		5.3.1	Increasing structure complexity	76
			5.3.1.1 Multiple QWs	76
			5.3.1.2 VCTL Structure	77
		532	Increasing model accuracy	77

References	79
Arabic Abstract	1