بسم الله الرحمن الرحيم

صدق الله العظيم

(سورة طه -آية ۲۶-۲۸)

EFFECT OF DIFFERENT SURFACE TREATMENTS ON SHEAR BOND STRENGTH OF HIGH STRENGTH CERAMIC WITH RESIN CEMENT

A Thesis Submitted to the Faculty of Oral and Dental Medicine, Cairo University, for Partial Fulfillment of the Requirements for Master Degree in Dental Science (Fixed Prosthodontics)

> YamenShareef Al-Qassem B.D.S (October 6 University) 2004

Faculty of Oral and Dental Medicine Cairo University 2011

Supervisors

<u>Supervisors</u>

PROF.DR. AHMAD HASANEIN KHALEL

Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine Cairo University

DR. Mona Attia Mohammed Mokbel
Assistant Professor of Fixed Prosthodontics,
Faculty of Oral and Dental Medicine
Cairo University

Contents

Page	
Acknowledgment	i
Dedication	ii
List of Tables	iii
List of Figures	iv
Introduction	1
Review of literature	4
Aim of the study	32
Materials and Methods	33
Results	79
Discussion	101
Summary and Conclusion	111
References	114
Arabic summary	

Acknowledgement

ACKNOWLEDGEMENT

First and forever, I would like to thank god for his generosity prevails my life, his guidance and help to finish this work.

I have the great honor to thank and express my deep feeling to *Dr. Ahmed Hasanein Khalil*, professor of fixed prosthodontics ,faculty of oral and dental medicine, cairo university , for his guidance, valuable facilities, advices, and unlimited time offered to me during this work. That without his help wouldn't have come true.

Also I have the pleasure to express my deep respect and gratitude to *Dr. Mona Attia Mohammed Mokbel*, Assistant of professor of fixed prosthodontics ,faculty of oral and dental medicine, cairo university, for her support, continous help and enthusiastic stimulation through this work.

Finally, I would like to thank staff members of Fixed Prosthodontics Department in Cairo University and all my friends and every one participated in this work for their help and support.

Delication

This work Dedicated To

My lovely family for the endless love, Support and encouragement

LIST OF TABLES

Table Number	Title	Page Number
(1 – a)	Materials used in this study.	33
(1 – b)	Materials used in this study.	34
(2)	Samples Grouping.	36
(3)	Results of regression analysis for the effect of material, surface treatment and their interactions on mean shear bond strength	80
(4)	The means, standard deviation (SD) values and results of comparison between materials regardless of surface treatment	81
(5)	The means, standard deviation (SD) values and results of comparison between materials with each surface treatment	82
(6)	The means, standard deviation (SD) values and results of comparison between surface treatments regardless of material	84
(7)	The means, standard deviation (SD) values and results of comparison between surface treatments at each aging period	87
(8)	The means, standard deviation (SD) values and results of comparison between the different interactions	88
(9)	mean (Ra) values in microns for different surface treatments of In-Ceram Zirconia,YTZP-Zirconia and IPS-EmpressII	90

LIST OF FIGURES

Figure number	Title	Page number
(1)	Assembled and disassembled split copper mold	37
(2)	T-Rigid composite resin	38
(3)	Special light curing unit	38
(4)	Copper mold and pattern resin	39
(5)	Zirconzahn milling unit	39
(6)	Zirconzahn block	40
(7)	Milling of zirconia block	40
(8)	Zircon lamp	41
(9)	Sinter furnace	42
(10)	A:In-Ceram additive. B:In-Ceramliquid. C:In-Ceram Zirconia powder	44

(11)	 Steps for slip mixing a) Mixing of In-Ceram liquid and additive. b) Progressive addition of In-Ceram Zirconia powder into the liquid. c) Interruption of mixing and putting the glass beaker in the VITASONIC II. d) Holding the mixture under vacuum. 	45
(12)	Slip left to dry in the copper mold	46
(13)	Disassembling the mold for retrieving slip	47
(14)	The VITA INCERAMAT	47
(15)	VITA In-Cearm testing liquid	49
(16)	VITA In-Ceram glass powder	51
(17)	Disc shaped core after glass infiltration firing	51
(18)	Disassembled split copper mold with blue inlay wax discs	52
(19)	The investment assembly A-The investment rubber ring. B-The plastic ring base. C-The plastic leveling ring.	54
(20)	Disc shaped wax patterns sprued and attached to the plastic ring base.	54

(21)	Vacuum mixer	55
(22)	Preheating furnace	56
(23)	$AlO_{\mathcal{X}}$ plunger (a) and Investment ring assembly (b) [containing sprued wax samples within it] placed inside preheating furnace .	57
(24)	The press furnace	57
(25)	IPS Empress 2 small ingot	59
(26)	IPS Empress 2 ingot inside the heated investment	59
(27)	Placing the heated AlO_X plunger on the IPS Empress 2 ingot.	60
(28)	The pressing furnace with the assembly inside	60
(29)	Investment assembly [cast samples $+ AlO_X$ plunger] after pressing in press furnace from top to base: A- End of the AlO_X plunger extruded outside the investment ring. B- Investment ring. C- Pressing furnace	61
(30)	Marking the length of the ALOx plunger	63
(31)	Cutting the investment ring at the predetermined point	63

(32)	light-curing, radiopaque composite Te-Econom Plus	65
(33)	Disassembled split copper mold with light cured composite resin discs.	65
(34)	Airborn-particles abrasion device	67
(35)	Ceramic discs were mounted in a metal holder ready for airborne blasting	68
(36)	Hydrofluoric acid etching gel	68
(37)	Profilometer	69
(38)	Disassembeled cementing device.	71
(39)	Monobond-S silane coupling agent	71
(40)	Dual-curing luting composite system Variolink II	72
(41)	Assembled cementing device with cemented ceramic and composite discs	73
(42)	Cemented ceramic and composite discs	73
(43)	LLOYD Universal Testing Machine	75
(44,A)	Disassembled holding device	76
(44,B)	Assembled holding device	76
(45)	The holding device attached to the LLOYD universal testing machine	77

(46)	Scanning Electron Microscope	78
(47)	Histogram representing mean shear bond strength with different materials	81
(48)	Histogram representing mean shear bond strength of the three materials with each surface treatment	83
(49)	Histogram representing mean shear bond strength with different types of surface treatment	85
(50)	Histogram representing mean shear bond strength with different surface treatments at each aging period	87
(51)	Histogram representing mean shear bond strength with different variables interactions	89
(52)	Scanning electron photomicrograph of In-Ceram Zirconia after sandblasting with 110 μ m AL_2O_3	93
(53)	Scanning electron photomicrograph of In-Ceram Zirconia after sandblasting with $50\mu m$ AL_2O_3	93
(54)	Scanning electron photomicrograph of In-Ceram Zirconia after sandblasting with 110 μ m AL_2O_3 + Etching	94
(55)	(Figure-55):Scanning electron photomicrograph of In-Ceram Zirco after sandblasting with $50\mu m$ AL_2O_3 + Etching	94
(56)	Scanning electron photomicrograph of YTZP- Zirconia after sandblasting with $110\mu m~AL_2O_3$	96
(57)	Scanning electron photomicrograph of YTZP- Zirconia after sandblasting with $50\mu m~AL_2O_3$	96
(58)	Scanning electron photomicrograph of YTZP- Zirconia after sandblasting with $110\mu m~AL_2O_3$ +Etching	97

(59)	Scanning electron photomicrograph of YTZP- Zirconia after sandblasting with $50\mu m~AL_2O_3$ +Etching	97
(60)	Scanning electron photomicrograph of IPS-Empress 2 after sandblasting with $110\mu m~AL_2O_3$	99
(61)	Scanning electron photomicrograph of IPS-Empress 2 after sandblasting with $50\mu m~AL_2O_3$	99
(62)	Scanning electron photomicrograph of IPS-Empress 2 after sandblasting with $110\mu m\ AL_2O_3 + Etching$	100
(63)	Scanning electron photomicrograph of IPS-Empress 2 after sandblasting with $50\mu m\ AL_2O_3$ + Etching	100