Design and Manufacturing of Q-Switched Pulsed Nd:YAG Laser System For Spectroscopic Measurements

A THESIS SUBMITTED BY

Amro Kamal Mohamed Harfoosh
B.Sc. In Electrical Engineering
Communications Department
Military Technical College

For the partial fulfillment of the requirement of the M.Sc. Degree in laser sciences from the Department of Laser Sciences and interaction

NATIONAL INSTITUTE OF LASER ENHANCED SCIENCES,

CAIRO UNIVERSITY

EGYPT.

Design and Manufacturing of Q-Switched Pulsed Nd:YAG Laser System For Spectroscopic Measurements

A THESIS SUBMITTED BY

Amro Kamal Mohamed Harfoosh

B.Sc. In Electrical Engineering Communications Department Military Technical College

SUPERVISING COMMITTEE

Prof. Dr. Mohy Saad Mansour

Prof. Dr. Moayed Aziz

Dr. Khaled Abdelsabour Elsayed

HEAD OF THE DEPARTMENT

Acknowledgements

I'm deeply grateful to all the people who have supported and helped me towards the successful completion of this dissertation.

I wish to express my profound gratitude and sincere appreciation to **Professor Dr.**Mohy Saad Mansour (Dean of the National Institute of Laser Enhanced Sciences) and **Professor Dr. Moayad Aziz**, a visiting Professor of laser engineering at National Institute of Laser Enhanced Sciences (NILES), Cairo University, who both have been most generous with their supervision, guidance, advice, and encouragement throughout the preparation of this thesis.

I would like to express my gratitude to **Dr. Khaled Abdelsabour**, Assistant Professor of laser physics at Faculty of Science, Cairo University for his guidance, advice, generous help and scientific support.

Many thanks to Mr. M. Atef Reda for his support and fruitful discussions, as well as Dr. Hisham Imam, Assistant Professor of laser physics at Niles for his kind help and scientific support in setting and analyzing the results of LIBS experiment.

Thanks to Eng. Mohamed Zaki and his co-worker at Arabian-British co. for helping in manufacturing the opto-mechanical systems.

Thanks to Dr. Fatma, Assistant Professor of Conservation department, Faculty of Fine Arts for providing the samples and helping in interpreting the data of LIBS experiment.

Last but not least, I wish to convey my deepest appreciation and utmost gratitude to my family for their meticulous encouragement and support.

Contents

Abstract

Chapter I: Introduction

1.1	Solid state laser components	4
	1.1.1 Power sources1.1.2 Optical resonators (basic building blocks of lasers).	4 7
1.2 1.3 1.4 1.5	Intensity gain and absorption Rate equations Energy-transfer up conversion Q-Switch	9 13 18 19
1.6	 1.5.1 Mechanical Q- switch 1.5.2 Electro-optic and acousto – optic Q-switch 1.5.3 Passive Q-switch Thermo-optic effects and heat removal 	22 23 24
1.7	Laser – induced breakdown spectroscopy (LIBS)	27 32
1.8	History of LIBS	35
	Aim of work	41
Chapter 2.1	II: Pulsed Solid State Laser Design Introduction	42
2.2	Basic elements of pulsed laser power supplies	42
2.3	Flashlamps and their characteristics	44
	2.3.1 Flashlamp construction	44
	2.3.2 Lamp lifetime2.3.3 Lamp electrical characteristics	46 50
2.4	Energy-storage and pulse-shaping circuits	50
2.5	RLC circuit design procedures	55
2.6	PFN circuits	57
2.7	Discharge circuit components	59
2.8	Inductors	59
2.9	Lamp triggering techniques	۲۰
2.10	System control and operation	62

Chapter III:Pulsed Nd:YAG laser system design and characterization

3.1	Syste	m design		64
	3.1.1	Design o	of Laser power supply	65
		3.1.1.1	Designing of the flashlamp driving circuit	66
		3.1.1.2	Flashlamp life time	69
	3.1.2	Design o	of the laser head	69
		3.1.2.1	Design of the laser cavity resonator	69
		3.1.2.2	Passive Q-switch	71
		3.1.2.3	Design of the Pump cavity (calculations for elliptical pump cavity)	72
3.2	Syster	m charac	teristics	81
	3.2.1		ergy and slope efficiency different at output coupler reflectivity	81
	3.2.2		mp pulse width	84
	3.2.3	1	al Profile (Q-switched laser pulse)	85
	3.2.4		Profile (Q-switched laser modes)	86
	3.2.5	Thermai	loading and heat effect in the system	87
3.3	Summ	ary of de	esign parameters	89
Chap	ter IV:	Applica	ation of the laser system in laser	
			spectroscopy (LIBS)	
4.1	Б	• ст		0.1
4.1		0 0	IBS technique	91
4.2	Adva	ntages an	nd disadvantages of LIBS technique	92
4.3	Expe	rimental S	Setup	94
4.5	Archa	aeological	l ceramic samples	97
4.6	Resul	ts and dis	scussion	98
CON	NCLUS	ION		103
RFF	FRFN	CFS		105

Abstract

In this thesis we designed and built a passive Q-switched pulsed Nd: YAG laser system that can be used in various applications. This system can provide a potential compact robust laser source for portable laser induced Breakdown Spectroscopy system. This is an advantage since most other analytical technique can not be used in field.

In LIBS experiment the breakdown threshold for solid targets ranges from 10^7 to 10^8 W/cm². The whole laser system including, power supply, optical pump cavity, and laser resonator was designed and built to meet this power density.

The passive Q-switching technique was chosen while designing the system for more compact, robust and lessen the complexity of the system. The present Nd:YAG laser system operates at 1064-nm single shot pulsed. The maximum output energy of the present passive Q-switched laser pulse is about 170mJ with slope efficiency of 0.34%. The number of pulses was found to be in the range of 1 – 6. This depends on the pump energy. By increasing the pump energy, the number of pulses per laser shot increases. The six laser pulses are obtained at the maximum pump energy of 50J. The pulse width of each pulse ranges from 20 to30 ns. All laser pulses in each shot have different intensities. The variation of the laser pulse energy in each shot is within 36% relative standard deviation. The minimum energy per pulse within train of pulses is 10-mJ while the maximum is 60-mJ. The average energy per pulse is 28 mJ. The maximum total energy of the 6-pulses laser shot was about 167 mJ with 16% relative standard deviation.

The pulses are found to be approximately evenly distributed in time. The time distribution of the pulses show that the average duration of inter-pulse time gaps decreased when the number of pulses increased. The total duration of the output pulse series is within 300 μ s. The inter-pulse time gap at the maximum pump energy is 60 μ s. At any given pump energy level, the laser output pulse structure was seen to be reasonably stable; only one out of 10–20 shots gave rise to a pulse number one higher or lower . The jitter on the time gaps between pulses was found to be 3–5 μ s. The inter-pulse time gap between the last two pulses was about 25% shorter than all former gaps.

The system can provide an adequate source of laser energy to run many spectroscopic experiments as compared to commercial laser source. The size and the performance of the present system are suitable for robust LIBS technique to be used in field. In addition the present laser system can also be applied in more spectroscopic techniques such as Raman spectroscopy.

List of Figures

Fig. 1-1	Simple plano concave cavity	7
Fig. 1-2	Schematic of the energy levels with their absorption	10
	and emission cross sections	
Fig. 1-3	The energy diagram of Nd ³⁺ in the YAG host	13
Fig. 1-4	Energy diagram for a quasi-three level laser system	14
Fig. 1-5	Application of an electro-optic Q-switch in a solid-state laser	23
Fig. 1-6	Application of an acousto-optic Q-switch in a solid-state laser	23
Fig. 1-7	Four-level model of the Cr ⁴⁺ -doped saturable absorber	26
Fig. 1-8	Energy balance in an optically pumped solid-state laser system.	30
Fig. 1-9	LIBS technique	33

Fig. 2-1	Simplified diagram of power supply for operation of a flashlamp of a pulsed solid-state laser	43
Fig. 2-2	Air-cooled xenon flashlamp with external trigger wire	44
Fig. 2-3	Typical linear water-cooled xenon flashlamp	45
Fig. 2-4	Typical helical flashlamp	46
Fig. 2-5	Explosion energy per inch of arc length versus pulse duration for several Xe-filled lamp diameters.	47
Fig. 2-6	Lamp lifetime as function of percent of explosion energy per shot	49
Fig. 2-7	Single RLC circuit	51
Fig.2-8 (a)	Over-damped and under-damped RLC discharge current	53
Fig.2-8 (b)	Current shape of critically damped pulse	53
Fig. 2-9	Multiple mesh Pulse-forming network.	57
Fig. 2-10	Oscilloscope trace of lamp output activated by using a pulse-forming network.	57
Fig. 2-11	External trigger scheme for laser flashlamp	61
Fig. 2-12	Schematic for series triggering of a laser flashlamp	61
Fig. 2-13	Configuration for a "complete" laser flashlamp discharge system	62

Fig. 3-1	Flashlamp driving circuit	68
Fig. 3-2	Layout of the laser resonator	70
Fig. 3-3	Optical pump cavity	73
Fig. 3-4	Single ellipse pump cavity with two holder sides	74
Fig. 3-5	Cavity disassembly of pulsed Nd:YAG laser system	75
Fig. 3-6	Cavity assembly of pulsed Nd:YAG laser system	76
Fig. 3-7	Lower part of pumping cavity	77
Fig. 3-8	Upper part of pumping cavity	78
Fig. 3-9	Cavity sides	79
Fig. 3-10	Rod mount	80
Fig. 3-11	Output energy of Nd: YAG laser as a function of pump energy at 50% output coupler reflectivity.	81
Fig. 3-12	Output energy of Nd:YAG laser as a function of pump energy at 60% output coupler reflectivity	82
Fig. 3-13	Output energy of Nd:YAG laser as a function of pump energy at 70% output coupler reflectivity	83
Fig. 3-14	Flashlamp pulse width	84
Fig. 3-15	Temporal profile of passively Q-switched laser pulse	85
Fig. 3-16	Spatial profile (Q-switch laser pulse)	86

Fig. 3-17	Laser cavity resonator	90
Fig. 3-18	Power supply unit	90
Fig. 3-18	Whole Q-Switched Pulsed Nd: YAG La	ser System 90

Fig. 4-1	LIBS experimental setup	95
Fig. 4-2	Samples from different periods	97
Fig. 4-3	Emission spectra from ceramic body of artifact samples	98
Fig. 4-4	Emission spectra from brown ceramic body of artifact samples	99
Fig. 4-5	Emission spectra from body and glaze of artifact sample	100
Fig. 4-6	Emission spectra from glaze layer of artifact sample	100
Fig. 4-7	Emission spectra from glaze layer of archeological samples (a) using commercial Nd:YAG laser system (b) using our Nd:YAG	101
	laser system	

List of Tables

Table (1-1)	Energy transfer in a cw krypton arc lamp, pumped Nd: YAG laser	29
Table (1-2)	Energy transfer in a Nd:Glass disk amplifier	31
Table (3-1)	List of components of the flashlamp driving circuit	68
Table (3-2)	Laser rod specifications	71
Table (3-3)	Summary of design parameters	90
Table (4-1)	LIBS experimental setup parameters	97

Nomenclatures:

Absorption coefficient	α
Absorption efficiency	$\eta_{\scriptscriptstyle a}$
Average absorption cross-section	σ_{ij}
Beam diameter-(m) meter	D, D_0
Boltzmann's constant	$\mathbf{k}_{\mathtt{B}}$
Capacitance-(F)farad	C
Current-(A)amp	i
Degeneracy factors of the state E_j	\mathbf{g}_{j}
Efficiency	η
Electron charge	e
Electrical resistance- (Ω) ohm	R
Energy difference	E
Flashlamp explosion energy -(J) joul	\mathbf{E}_{exp}
Focal length-(m) meter	f
Gain coefficient	g
Incident pump power-(W) watt	\mathbf{P}_{p}

Input-, output-, optical energy-(J) joul	Ein, Eout, Eopt
Lamp impedance parameter- Ω (A) 1/2	\mathbf{K}_{0}
Length element	dz
Life time of the flashlamp (number of shots)	N
Number of atoms in exited state	N_{j}
Normalized spatial distribution	\mathbf{r}_{p}
Operating energy-(J) joul	$\mathbf{E_0}$
Photon density	Φ
Population densities of the laser levels	N_1 , N_2
Power supply efficiency	$\eta_{\scriptscriptstyle p}$
Power density of laser beam-watt/cm ²	I
Power-(W) watt	P
Propagation factor	M^2
Pulse width at one third of the peak	t
amplitude-(s)second	
Pulse width of the flashlamp(pumping puls) -	\mathbf{t}_{p}
(s)second	
Quantum efficiency of the pumping process	η_p