Surgical complications <u>in</u>

Cochlear implantation

Thesis

SUBMITTED FOR PARTIAL FULFILMENT OF MASTER DEGREE IN OTORHINOLARYNGOLOGY, HEAD&NECK SURGERY

BY

Mahmoud Mohamed Mohamed Ahmed Mustafa Sharaf

M.B.B.CH. CAIRO UNIVERSITY-2006

SUPERVISORS

Prof. Dr. Mohamed Abd Al-Rahman Al-Shazly

PROFESSOR OF OTORHINOLARYNGOLOGY, HEAD&NECK SURGERY

CAIRO UNIVERSITY

Prof. Dr. Ahmed Hasan khashaba

PROFESSOR OF OTORHINOLARYNGOLOGY, HEAD&NECK SURGERY EGYPTIAN MILITARY MEDICAL ACADEMY

FACULTY OF MEDICINE - CAIRO UNIVERSITY

2012

Abstract

The candidacy for implantation is considered separately for adults and children. As outlined in the 1995 National Institutes of Health (NIH) consensus statement on cochlear implantation, adult candidacy is noted as being successful in postlingually deaf adults with severe-to-profound hearing loss with no speech perception benefit from hearing aids. Prelingually deafened adults must be counseled in regard to realistic expectations, as language and open-set speech discrimination outcomes are less predictable. Children are considered candidates for implantation at age 12 months, and, because of meningitis-related deafness with progressive cochlear ossification, occasional earlier implantation is necessary.

Key word

AICA- ECOG- IT-MAIS- OHCS- COCHLEAR IMPLANTATION

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

* هَالُوا سُبْحَانَكَ لَا عِلْمَ لَذَا إِلَّا مَا * * عُلَمْتَذَا إِنَّكَ أَنْتِ الْعَلِيمُ الْحَكِيمُ *

"حدق الله العظيم"

البخرة آية ٣٢

To my

Mother,

Mahmoud sharaf,,,,,,,

Acknowledgement

I wish to express my deep gratitude and thanks to Prof. Dr. Mohamed Abd Al-Rahaman Al-Shazly professor of Otorhinolaryngology — Cairo University for providing me with the initial stimulus which aroused my interest in this work.

Also, I want to express my deep thanks to Prof. Dr. Ahmed Hasan Khashaba professor of Otorhinolaryngology — EGYPTIAN Military Medical Academy for his valuable help & guidance, I want to tell him that you are my godfather, I had inspired everything from you.

At first and end all thanks should be for my God.

CONTENTS

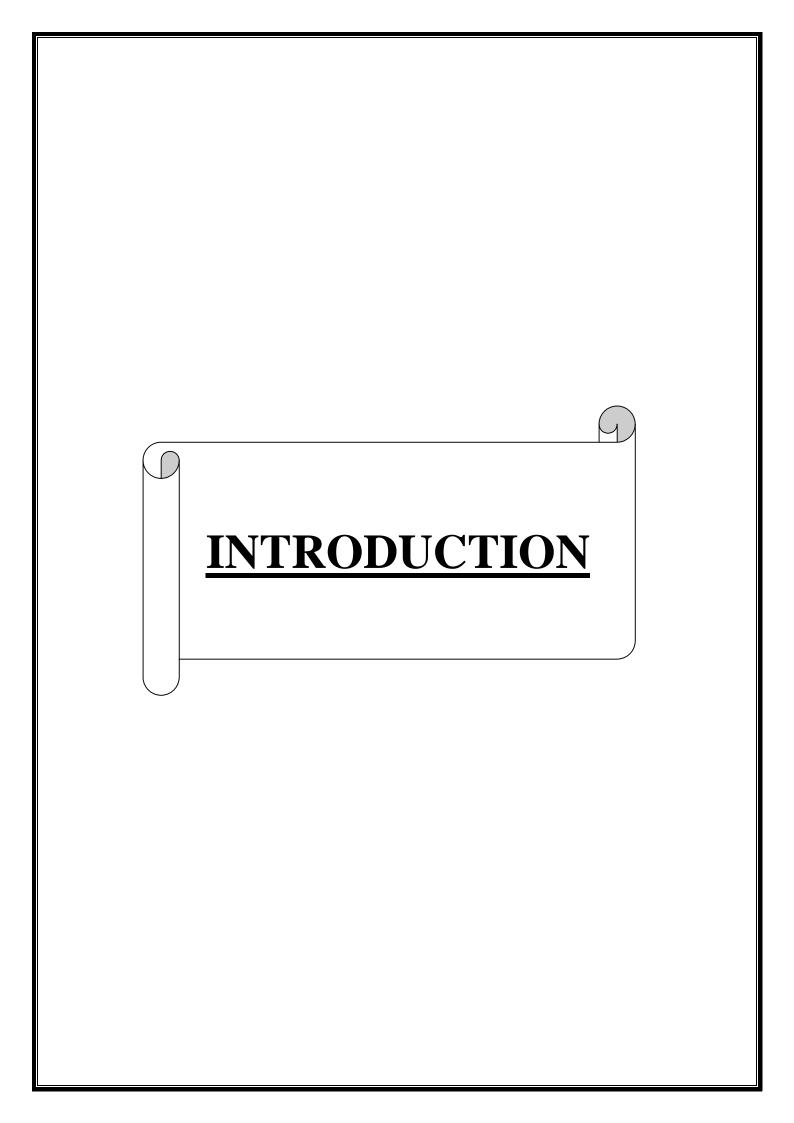
Acknowledgement III
List of contents IV
List of figuresV
List of tablesVII
List of abbreviations VIII
Introduction1
Chapter (1) review5
Chapter (2) pa ents and methods66
Chapter (3) results69
Chapter (4) discussion79
English summary84
References87
Arabic summary101

LIST OF FIGURES

FIGURE 1: Inner ear structure12
FIGURE 2: The Membranous Labyrinth13
FIGURE 3: Cochlear cross section15
FIGURE 4: Cochlear cross-section at a single turn15
FIGURE 5 : rotation of the cross section of the scala tympani16
FIGURE 6: Organ of Corti19
FIGURE 7: Scanning electron micrograph of a section of the organ
of Corti21
FIGURE 8: Fluid system of the cochlea25
FIGURE 9 : Three types of cochlear implant incisions used40
FIGURE 10: Illustrations of surgical steps of cochlear implantation:
(A) Inverted J incision41
(B) Burr holes are drilled at the border of the implant bed for the sutures fixing the implant44
(C) Preparation of the Implant Bed for the Receiver44
(D)Posterior Tympanotomy46
(E) Cochleostomy47
(F) The position of the electrode must be clearly seen within the cochleostomy opening48

(G) Device placement	49
FIGURE 11 : Postoperative x-ray image of a cochlear implant	51
FIGURE 12 : Flow chart for management of cochleostomy gushers.	.57
FIGURE 13: High-resolution axial images of the temporal bone demonstrate correct positioning of the cochlear implant electrode proximally at the round window but then taking an abnormal course.	58
FIGURE 14 : Age groups distribution among the studied group	69
FIGURE 15: Duration of deafness among the studied group	.70
FIGURE 16: Cause of deafness among the studied group	.7 1
FIGURE 17: Side of operation among the studied group	72
FIGURE 18: Type of implants used for the studied group	73
FIGURE 19: Complications among the studied group	74
FIGURE 20: Types of Complications among the studied group	75

LIST OF TABLES


Table 1: Comparison of the three FDA approved devices34
Table 2: CDC's vaccination recommendations
Table 3: Age groups distribution among the studied group69
Table 4: Duration of deafness among the studied group70
Table 5: Cause of deafness among the studied group71
Table 6: Side of operation among the studied group72
Table 7: Type of implants used for the studied group73
Table 8: Complications among the studied group74
Table 9: Age groups of complicated cases75
Table 10: Onset of deafness of complicated cases76
Table 11: Cause of deafness of complicated cases76
Table 12: Side of complicated cases77
Table 13: Type of implant of complicated cases78

LIST OF ABBREVIATIONS

AAO-HNS American Academy of Otolaryngology-Head and Neck Surgery ABR.....Auditory Brainstem Response ACE Above Combination Encoders ADAuditory Dyssynchrony AICA Anterior Inferior Cerebellar Artery AN Auditory neuropathy BTE Behind The Ear CAEP Cortical Auditory Evoked Potentials **CC** Common Cavity **CDC** Centers for Diseases Control and Prevention CH Cochlear Hypoplasia Clarion 2 C.I......Cochlear Implantation CIS Continuous Interleaved Sampling CNC Consonant-Nucleus-Consonant CSF Cerebrospinal Fluid CT Computed Tomography **CUNY** City University of New York **ECOG** Electrocochleography **ENG** Electronystagmography **EVA** Enlarged Vestibular Aqueduct

EVAS	Enlarged Vestibular Aqueduct Syndrome
FDA	Food and Drug Administration
HINT	Hearing in Noise Test
HRCT	High Resolution Computed Tomographic
IAC	Internal Auditory Canal
IHCs	Inner Hair Cells
IP	Incomplete Partitioning
IQ	Intelligence Quotient
IT-MAISInfant-Todo	dler Meaningful Auditory Integration Scale
LNT	Lexical Neighborhood Test
LOC	Lateral Olivocochlear Bundle
MLNT	Multisyllabic Lexical Neighborhood Test
MOC	Medial Olivocochlear Bundle
MPS	Multiple Pulsatile
MRI	Magnetic Resonance Imaging
NIH	National Institutes of Health
NRI	Neural Response Imaging
NRT	Neural Response Telemetry
OAEs	Otoacoustic Emissions
OHCs	Outer Hair Cells
OME	Otitis Media with Effusion
PCV7	7-valent Pneumococcal Conjugate Vaccine
PE tubes	Pressure Equalization tubes

PPv23	. 23 variant Pneumococcal Polysaccharide Vaccine
SAS	Simultaneous Analog Stimulation
scc	Semicircular Canal
SPEAK	Spectral Peak
U.S.	

CHAPTER (1) INTRODUCTION

Cochlear implant is a device that delivers electrical stimulation through an array of electrodes to a bundle of cochlear nerve fibers. And, it is established as an effective and safe method of rehabilitation for profoundly deaf patients (**Kim et al., 2004**).

In 1957, Djourno and Eyries made the observation that activation of the auditory nerve with an electrified device provides auditory stimulation in a patient. This observation was considered the seminal observation that paved the way for modern cochlear implantation. In 1963, Doyle J, and Doyle D's early experiments in scala tympani implantation preceded the first House/3M single-channel implant in 1972. Multichannel devices introduced in 1984 have replaced single-channel devices by virtue of improved speech recognition capabilities. As of 2006, nearly 100,000 cochlear implants are estimated to have been performed worldwide (Megerian and Murray, 2006).

Cochlear implants are the first true bionic sense organs. The human cochlea is an electromechanical transducer. Cochlear implants, like other human hair cell, receive mechanical sound energy and convert it into a series of electrical impulses (**Roland et al., 2003**).

Sound is first detected by a microphone (usually worn on the ear) and converted into an analog electrical signal. This signal is then sent to an external processor where it is transformed into an electronic code. This code is transmitted via radiofrequency across the skin by a transmitting coil. Ultimately, this code is translated by the receiver-stimulator into rapid electric impulses distributed to electrodes on a coil implanted within the cochlea (**Driscoll et al.**, 2004).

Introduction

The candidacy for implantation is considered separately for adults and children. As outlined in the 1995 National Institutes of Health (NIH) consensus statement on cochlear implantation, adult candidacy is noted as being successful in postlingually deaf adults with severe-to-profound hearing loss with no speech perception benefit from hearing aids. Prelingually deafened adults must be counseled in regard to realistic expectations, as language and open-set speech discrimination outcomes are less predictable. Children are considered candidates for implantation at age 12 months, and, because of meningitis-related deafness with progressive cochlear ossification, occasional earlier implantation is necessary. Investigations are ongoing into extending the age of early routine implantation to younger than 12 months. audiological criteria include severe-to-profound sensorineural hearing loss bilaterally and poor speech perception under best-aided conditions, with a failure to progress with hearing aids and an educational environment that stresses oral communication (Megerian and Murray, 2006).

During the last twenty years, the indications for cochlear implants (CIs) extended significantly due to positive experience with CIs, improved CI technology, and safer surgery. Providing a postlingually deaf adult with a unilateral CI and prelingual child younger than 5 year have been the earliest indication and remains the standard indication. However, CIs are also indicated for prelingually deaf adults, and for children younger than one year old. Recently, CIs are also indicated for adults with residual hearing; when best aided sentence recognition scores in quiet are lower than 70%. CIs for patients with residual hearing sometimes imply the use of bimodal CI; a device that stimulates the cochlea both electrically and acoustically. Another promising evolution is bilateral implantation. Nowadays it has also become possible to place a CI in the malformed cochlea (**Deggouj et al., 2007**).